Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism

Subjects

Abstract

Peripheral cannabinoid receptors exert a powerful inhibitory control over pain initiation, but the endocannabinoid signal that normally engages this intrinsic analgesic mechanism is unknown. To address this question, we developed a peripherally restricted inhibitor (URB937) of fatty acid amide hydrolase (FAAH), the enzyme responsible for the degradation of the endocannabinoid anandamide. URB937 suppressed FAAH activity and increased anandamide levels outside the rodent CNS. Despite its inability to access brain and spinal cord, URB937 attenuated behavioral responses indicative of persistent pain in rodent models of peripheral nerve injury and inflammation and prevented noxious stimulus–evoked neuronal activation in spinal cord regions implicated in nociceptive processing. CB1 cannabinoid receptor blockade prevented these effects. These results suggest that anandamide-mediated signaling at peripheral CB1 receptors controls the access of pain-related inputs to the CNS. Brain-impenetrant FAAH inhibitors, which strengthen this gating mechanism, might offer a new approach to pain therapy.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: URB937 is a peripherally restricted FAAH inhibitor.
Figure 2: URB937 suppressed pain responses elicited by intraperitoneal injections of acetic acid in Swiss Webster mice.
Figure 3: URB937 suppressed pain behavior elicited by neural injury in mice.
Figure 4: URB937 attenuated pain behavior elicited by inflammation in mice.
Figure 5: URB937 attenuated formalin-induced pain behavior and spinal cord Fos protein expression in rats.

References

  1. 1

    Stein, C., Schafer, M. & Machelska, H. Attacking pain at its source: new perspectives on opioids. Nat. Med. 9, 1003–1008 (2003).

    CAS  Article  PubMed  Google Scholar 

  2. 2

    Calignano, A., La Rana, G., Giuffrida, A. & Piomelli, D. Control of pain initiation by endogenous cannabinoids. Nature 394, 277–281 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  3. 3

    Nackley, A.G., Suplita, R.L. II & Hohmann, A.G. A peripheral cannabinoid mechanism suppresses spinal fos protein expression and pain behavior in a rat model of inflammation. Neuroscience 117, 659–670 (2003).

    CAS  Article  PubMed  Google Scholar 

  4. 4

    Dziadulewicz, E.K. et al. Naphthalen-1-yl-(4-pentyloxynaphthalen-1-yl)methanone: a potent, orally bioavailable human CB1/CB2 dual agonist with antihyperalgesic properties and restricted central nervous system penetration. J. Med. Chem. 50, 3851–3856 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. 5

    Anand, P., Whiteside, G., Fowler, C.J. & Hohmann, A.G. Targeting CB2 receptors and the endocannabinoid system for the treatment of pain. Brain Res. Rev. 60, 255–266 (2009).

    CAS  Article  PubMed  Google Scholar 

  6. 6

    Agarwal, N. et al. Cannabinoids mediate analgesia largely via peripheral type 1 cannabinoid receptors in nociceptors. Nat. Neurosci. 10, 870–879 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  7. 7

    Kaufmann, I. et al. Enhanced anandamide plasma levels in patients with complex regional pain syndrome following traumatic injury: a preliminary report. Eur. Surg. Res. 43, 325–329 (2009).

    CAS  Article  PubMed  Google Scholar 

  8. 8

    Richardson, D. et al. Characterization of the cannabinoid receptor system in synovial tissue and fluid in patients with osteoarthritis and rheumatoid arthritis. Arthritis Res. Ther. 10, R43 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  9. 9

    Mitrirattanakul, S. et al. Site-specific increases in peripheral cannabinoid receptors and their endogenous ligands in a model of neuropathic pain. Pain 126, 102–114 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  10. 10

    Schlosburg, J.E., Kinsey, S.G. & Lichtman, A.H. Targeting fatty acid amide hydrolase (FAAH) to treat pain and inflammation. AAPS J. 11, 39–44 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11

    Kathuria, S. et al. Modulation of anxiety through blockade of anandamide hydrolysis. Nat. Med. 9, 76–81 (2003).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  12. 12

    Piomelli, D. et al. Pharmacological profile of the selective FAAH inhibitor KDS-4103 (URB597). CNS Drug Rev. 12, 21–38 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13

    Clapper, J.R. et al. A second generation of carbamate-based fatty acid amide hydrolase inhibitors with improved activity in vivo. ChemMedChem 4, 1505–1513 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  14. 14

    Alexander, J.P. & Cravatt, B.F. Mechanism of carbamate inactivation of FAAH: implications for the design of covalent inhibitors and in vivo functional probes for enzymes. Chem. Biol. 12, 1179–1187 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  15. 15

    Löscher, W. & Potschka, H. Blood–brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx 2, 86–98 (2005).

    Article  PubMed  PubMed Central  Google Scholar 

  16. 16

    Imai, Y. et al. Breast cancer resistance protein exports sulfated estrogens, but not free estrogens. Mol. Pharmacol. 64, 610–618 (2003).

    CAS  Article  PubMed  Google Scholar 

  17. 17

    LoVerme, J., La Rana, G., Russo, R., Calignano, A. & Piomelli, D. The search for the palmitoylethanolamide receptor. Life Sci. 77, 1685–1698 (2005).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18

    Cravatt, B.F. et al. Supersensitivity to anandamide and enhanced endogenous cannabinoid signaling in mice lacking fatty acid amide hydrolase. Proc. Natl. Acad. Sci. USA 98, 9371–9376 (2001).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Starowicz, K., Nigam, S. & Di Marzo, V. Biochemistry and pharmacology of endovanilloids. Pharmacol. Ther. 114, 13–33 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20

    LoVerme, J. et al. Rapid broad-spectrum analgesia through activation of peroxisome proliferator-activated receptor alpha. J. Pharmacol. Exp. Ther. 319, 1051–1061 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21

    Russo, R. et al. Synergistic antinociception by the cannabinoid receptor agonist anandamide and the PPAR alpha receptor agonist GW7647. Eur. J. Pharmacol. 566, 117–119 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22

    Bennett, G.J. & Xie, Y.K. A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man. Pain 33, 87–107 (1988).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Russo, R. et al. The fatty acid amide hydrolase inhibitor URB597 (cyclohexylcarbamic acid 3′-carbamoylbiphenyl-3-yl ester) reduces neuropathic pain after oral administration in mice. J. Pharmacol. Exp. Ther. 322, 236–242 (2007).

    CAS  Article  Google Scholar 

  24. 24

    Coderre, T.J. & Melzack, R. The contribution of excitatory amino acids to central sensitization and persistent nociception after formalin-induced tissue injury. J. Neurosci. 12, 3665–3670 (1992).

    CAS  Article  PubMed  Google Scholar 

  25. 25

    Puig, S. & Sorkin, L.S. Formalin-evoked activity in identified primary afferent fibers: systemic lidocaine suppresses phase-2 activity. Pain 64, 345–355 (1996).

    CAS  Article  Google Scholar 

  26. 26

    Kunos, G., Osei–Hyiaman, D., Batkai, S., Sharkey, K.A. & Makriyannis, A. Should peripheral CB(1) cannabinoid receptors be selectively targeted for therapeutic gain? Trends Pharmacol. Sci. 30, 1–7 (2009).

    CAS  Article  PubMed  Google Scholar 

  27. 27

    Ahluwalia, J., Yaqoob, M., Urban, L., Bevan, S. & Nagy, I. Activation of capsaicin-sensitive primary sensory neurones induces anandamide production and release. J. Neurochem. 84, 585–591 (2003).

    CAS  Article  PubMed  Google Scholar 

  28. 28

    Liu, J. et al. A biosynthetic pathway for anandamide. Proc. Natl. Acad. Sci. USA 103, 13345–13350 (2006).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29

    Hohmann, A.G. & Herkenham, M. Localization of central cannabinoid CB1 receptor messenger RNA in neuronal subpopulations of rat dorsal root ganglia: a double-label in situ hybridization study. Neuroscience 90, 923–931 (1999).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30

    Hohmann, A.G. & Herkenham, M. Cannabinoid receptors undergo axonal flow in sensory nerves. Neuroscience 92, 1171–1175 (1999).

    CAS  Article  PubMed  Google Scholar 

  31. 31

    Richardson, J.D., Kilo, S. & Hargreaves, K.M. Cannabinoids reduce hyperalgesia and inflammation via interaction with peripheral CB1 receptors. Pain 75, 111–119 (1998).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32

    Guindon, J. & Hohmann, A.G. Cannabinoid CB2 receptors: a therapeutic target for the treatment of inflammatory and neuropathic pain. Br. J. Pharmacol. 153, 319–334 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Sagar, D.R., Kendall, D.A. & Chapman, V. Inhibition of fatty acid amide hydrolase produces PPAR alpha–mediated analgesia in a rat model of inflammatory pain. Br. J. Pharmacol. 155, 1297–1306 (2008).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34

    Cravatt, B.F. et al. Functional disassociation of the central and peripheral fatty acid amide signaling systems. Proc. Natl. Acad. Sci. USA 101, 10821–10826 (2004).

    CAS  Article  PubMed  Google Scholar 

  35. 35

    Lever, I.J. et al. Localization of the endocannabinoid-degrading enzyme fatty acid amide hydrolase in rat dorsal root ganglion cells and its regulation after peripheral nerve injury. J. Neurosci. 29, 3766–3780 (2009).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36

    Stein, C. & Zollner, C. Opioids and sensory nerves. Handb. Exp. Pharmacol. 194, 495–518 (2009).

    CAS  Article  Google Scholar 

  37. 37

    Tegeder, I. et al. Peripheral opioid analgesia in experimental human pain models. Brain 126, 1092–1102 (2003).

    Article  PubMed  Google Scholar 

  38. 38

    Mor, M. et al. Cyclohexylcarbamic acid 3′- or 4′-substituted biphenyl-3-yl esters as fatty acid amide hydrolase inhibitors: synthesis, quantitative structure–activity relationships, and molecular modeling studies. J. Med. Chem. 47, 4998–5008 (2004).

    CAS  Article  Google Scholar 

  39. 39

    King, A.R. et al. URB602 inhibits monoacylglycerol lipase and selectively blocks 2-arachidonoylglycerol degradation in intact brain slices. Chem. Biol. 14, 1357–1365 (2007).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  40. 40

    Astarita, G., Ahmed, F. & Piomelli, D. Identification of biosynthetic precursors for the endocannabinoid anandamide in the rat brain. J. Lipid Res. 49, 48–57 (2008).

    CAS  Article  PubMed  Google Scholar 

  41. 41

    Calignano, A., La Rana, G. & Piomelli, D. Antinociceptive activity of the endogenous fatty acid amide, palmitylethanolamide. Eur. J. Pharmacol. 419, 191–198 (2001).

    CAS  Article  PubMed  Google Scholar 

  42. 42

    Tjølsen, A., Berge, O.G., Hunskaar, S., Rosland, J.H. & Hole, K. The formalin test: an evaluation of the method. Pain 51, 5–17 (1992).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank E. Dotsey for help with experiments. This research was supported by grants from the National Institutes on Drug Abuse (D.P. and A.G.H.), the University of Parma (M.M.) and the Italian Ministry for Public Education, University and Research (G.T., A.D and A.T.). G.M.-S. was partially supported by the Fulbright Commission and the Exchange Abroad Program, University of California. The support of the Agilent Foundation is gratefully acknowledged.

Author information

Affiliations

Authors

Contributions

J.R.C., G.M.-S., R.R., A.G., N.R.S., J.M.S., F.V., A.D., A.T. and S.S. participated in the design, performance and interpretation of the experiments and chemical syntheses. A.G.H., A.C., M.M., G.T. and D.P. participated in the design and interpretation of the experiments and chemical syntheses. D.P. oversaw the project and wrote the manuscript with help from J.R.C., G.M.-S., A.G.H., A.D., M.M. and G.T.

Corresponding author

Correspondence to Daniele Piomelli.

Ethics declarations

Competing interests

A patent application covering URB937 and allied compounds has been filed on behalf of the inventors (D.P., J.R.C., G.M.-S., A.D., A.T., M.M. and G.T.) by the University of California, Irvine, the Italian Institute of Technology, and the Universities of Urbino and Parma.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–10, Supplementary Table 1 and Supplementary Methods (PDF 6178 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Clapper, J., Moreno-Sanz, G., Russo, R. et al. Anandamide suppresses pain initiation through a peripheral endocannabinoid mechanism. Nat Neurosci 13, 1265–1270 (2010). https://doi.org/10.1038/nn.2632

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing