Article | Published:

Visualizing retinotopic half-wave rectified input to the motion detection circuitry of Drosophila

Nature Neuroscience volume 13, pages 973978 (2010) | Download Citation

Abstract

In the visual system of Drosophila, photoreceptors R1–R6 relay achromatic brightness information to five parallel pathways. Two of them, the lamina monopolar cells L1 and L2, represent the major input lines to the motion detection circuitry. We devised a new method for optical recording of visually evoked changes in intracellular Ca2+ in neurons using targeted expression of a genetically encoded Ca2+ indicator. Ca2+ in single terminals of L2 neurons in the medulla carried no information about the direction of motion. However, we found that brightness decrements (light-OFF) induced a strong increase in intracellular Ca2+ but brightness increments (light-ON) induced only small changes, suggesting that half-wave rectification of the input signal occurs. Thus, L2 predominantly transmits brightness decrements to downstream circuits that then compute the direction of image motion.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    & The influence of visual landscape on the free flight behavior of the fruit fly Drosophila melanogaster. J. Exp. Biol. 205, 327–343 (2002).

  2. 2.

    & On the structure of yaw torque in visual flight orientation of Drosophila melanogaster. J. Comp. Physiol. [A] 130, 113–130 (1979).

  3. 3.

    & Collision-avoidance and landing responses are mediated by separate pathways in the fruit fly, Drosophila melanogaster. J. Exp. Biol. 205, 2785–2798 (2002).

  4. 4.

    & The free-flight response of Drosophila to motion of the visual environment. J. Exp. Biol. 211, 2026–2045 (2008).

  5. 5.

    & Neural networks in the cockpit of the fly. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 188, 419–437 (2002).

  6. 6.

    & Fundamental mechanisms of visual motion detection: models, cells and functions. Prog. Neurobiol. 68, 409–437 (2002).

  7. 7.

    et al. Dissection of the peripheral motion channel in the visual system of Drosophila melanogaster. Neuron 56, 155–170 (2007).

  8. 8.

    & The structural brain mutant vacuolar medulla of Drosophila melanogaster with specific behavioral defects and cell degeneration in the adult. J. Neurogenet. 3, 135–158 (1986).

  9. 9.

    , , & Peripheral visual circuits functionally segregate motion and phototaxis behaviors in the fly. Curr. Biol. 19, 613–619 (2009).

  10. 10.

    & Motion processing streams in Drosophila are behaviorally specialized. Neuron 59, 322–335 (2008).

  11. 11.

    & Systemtheoretische Analyse einer Verhaltensweise (der Wechsel-Folgen-Reaktion des Rüsselkäfers Chlorophanus viridis). Verh. Dtsch. Zool. Ges. 7, 95–102 (1952).

  12. 12.

    & Systemtheoretische Analyse der Zeit-, Reihenfolgen- und Vorzeichenauswertung bei der Bewegungsperzeption des Rüsselkäfers Chlorophanus. Z. Naturforsch. [B] 11b, 513–524 (1956).

  13. 13.

    Optomotorische Untersuchungen des visuellen Systems einiger Augenmutanten der Fruchtfliege Drosophila. Kybernetik 2, 77–92 (1964).

  14. 14.

    & Temporal properties of the visual detectability of moving spatial white noise. Exp. Brain Res. 45, 179–188 (1982).

  15. 15.

    & The mechanism of directionally selective units in rabbit's retina. J. Physiol. (Lond.) 178, 477–504 (1965).

  16. 16.

    & Temporal covariance model of human motion perception. J. Opt. Soc. Am. A 1, 451–473 (1984).

  17. 17.

    & Spatiotemporal energy models for the perception of motion. J. Opt. Soc. Am. A 2, 284–299 (1985).

  18. 18.

    , & Fly motion vision. Annu. Rev. Neurosci. 33, 49–70 (2010).

  19. 19.

    , , & Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr. Biol. 18, 368–374 (2008).

  20. 20.

    et al. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J. Neurophysiol. 103, 1646–1657 (2010).

  21. 21.

    & Are there separate ON and OFF channels in fly motion vision? Vis. Neurosci. 8, 151–164 (1992).

  22. 22.

    , & Directionally selective motion detection by insect neurons. in Facets of Vision (eds. Stavenga, D.G. & Hardie, R.C.) Ch. 17, 360–390 (Springer-Verlag, Berlin, 1989).

  23. 23.

    & Motion detection in flies: parametric control over ON-OFF pathways. Exp. Brain Res. 54, 390–394 (1984).

  24. 24.

    The Interpretation of Visual Motion (MIT Press, Cambridge, Massachusetts, 1979).

  25. 25.

    & Illusory reversals of visual depth and movement during changes in contrast. Vision Res. 15, 957–961 (1975).

  26. 26.

    , & Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509, 493–513 (2008).

  27. 27.

    Atlas of an Insect Brain (Springer, Berlin, 1976).

  28. 28.

    & The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res. 258, 441–475 (1989).

  29. 29.

    & Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol. 305, 232–263 (1991).

  30. 30.

    et al. The target of Drosophila photoreceptor synaptic transmission is a histamine-gated chloride channel encoded by ort (hclA). J. Biol. Chem. 277, 42113–42120 (2002).

  31. 31.

    A histamine-activated chloride channel involved in neurotransmission at a photoreceptor synapse. Nature 339, 704–706 (1989).

  32. 32.

    , & Properties of histamine-activated chloride channels in the large monopolar cells of the dipteran compound eye: a comparative study. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 176, 611–623 (1995).

  33. 33.

    & Mechanism for neural signal enhancement in the blowfly compound eye. J. Exp. Biol. 144, 113–146 (1989).

  34. 34.

    & Electrophysiological-histological studies on some functional properties of visual cells and second order neurons of an insect retina. Z. Zellforsch. Mikrosk. Anat. 136, 291–306 (1973).

  35. 35.

    & Lateral inhibition in an insect eye. Z. Vgl. Physiol. 76, 233–244 (1972).

  36. 36.

    & Active and passive axonal propagation of non-spike signals in the retina of Calliphora. J. Comp. Physiol. 85, 89–104 (1973).

  37. 37.

    & Synaptic chloride channels generating hyperpolarizing on-responses in monopolar neurons of the blowfly visual system. J. Exp. Biol. 131, 435–438 (1987).

  38. 38.

    et al. Feedback network controls photoreceptor output at the layer of first visual synapses in Drosophila. J. Gen. Physiol. 127, 495–510 (2006).

  39. 39.

    & Visual motion detection circuits in flies: peripheral motion computation by identified small-field retinotopic neurons. J. Neurosci. 15, 5596–5611 (1995).

  40. 40.

    & Visual motion-detection circuits in flies: parallel direction- and non-direction-sensitive pathways between the medulla and lobula plate. J. Neurosci. 16, 4551–4562 (1996).

  41. 41.

    & Visual motion-detection circuits in flies: small-field retinotopic elements responding to motion are evolutionarily conserved across taxa. J. Neurosci. 16, 4563–4578 (1996).

  42. 42.

    et al. A genetically encoded calcium indicator for chronic in vivo two-photon imaging. Nat. Methods 5, 805–811 (2008).

  43. 43.

    , & Two-photon laser scanning fluorescence microscopy. Science 248, 73–76 (1990).

  44. 44.

    , & Directionally selective calcium signals in dendrites of starburst amacrine cells. Nature 418, 845–852 (2002).

  45. 45.

    & Frequency characteristics in the visual system of Drosophila: genetic dissection of electroretinogram components. J. Gen. Physiol. 69, 705–724 (1977).

  46. 46.

    The large monopolar cells L1 and L2 are responsible for ERG transients in Drosophila. J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 159, 655–665 (1986).

  47. 47.

    Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757 (2004).

  48. 48.

    , , & Crossover inhibition in the retina: circuitry that compensates for nonlinear rectifying synaptic transmission. J. Comput. Neurosci. 27, 569–590 (2009).

  49. 49.

    et al. Intrinsic ON responses of the retinal OFF pathway are suppressed by the ON pathway. J. Neurosci. 26, 11857–11869 (2006).

  50. 50.

    et al. Dissecting a circuit for olfactory behavior in Caenorhabditis elegans. Nature 450, 63–70 (2007).

Download references

Acknowledgements

We are very grateful to W. Denk, M. Mueller and J. Tritthardt for supporting and troubleshooting 2PLSM; M. Joesch for providing Matlab code and discussion; J. Haag and B. Schnell for discussion and comments on the manuscript; W. Essbauer and C. Theile for technical assistance; T. Gollisch for comments on the manuscript; G. Miesenböck and L. Sjulsion for their input on the use of LEDs; and the members of the mechanics and electronics workshop of the MPI Martinsried for excellent support.

Author information

Affiliations

  1. Max Planck Institute of Neurobiology, Martinsried, Germany.

    • Dierk F Reiff
    • , Johannes Plett
    • , Marco Mank
    • , Oliver Griesbeck
    •  & Alexander Borst

Authors

  1. Search for Dierk F Reiff in:

  2. Search for Johannes Plett in:

  3. Search for Marco Mank in:

  4. Search for Oliver Griesbeck in:

  5. Search for Alexander Borst in:

Contributions

D.F.R. conceptualized the triggered stimulus presentation, J.P. designed and engineered the LED arena, M.M. and O.G. engineered TN-XXL, A.B. and D.F.R. designed experiments and wrote the manuscript, D.F.R. performed all of the fly work, imaging experiments and data analysis and prepared the figures.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Dierk F Reiff.

Supplementary information

PDF files

  1. 1.

    Supplementary Text and Figures

    Supplementary Figure 1

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nn.2595

Further reading