Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Real-time visualization of complexin during single exocytic events

Abstract

Understanding the fundamental role of soluble NSF attachment protein receptor (SNARE) complexes in membrane fusion requires knowledge of the spatiotemporal dynamics of their assembly. We visualized complexin (cplx), a cytosolic protein that binds assembled SNARE complexes, during single exocytic events in live cells. We found that cplx appeared briefly during full fusion. However, a truncated version of cplx containing only the SNARE-complex binding region persisted at fusion sites for seconds and caused fusion to be transient. Resealing pores with the mutant cplx only partially released transmitter and lipid probes, indicating that the pores are narrow and not purely lipidic in structure. Depletion of cplx similarly caused secretory cargo to be retained. These data suggest that cplx is recruited at a late step in exocytosis and modulates fusion pores composed of SNARE complexes.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Imaging secretory granules labeled with NPY-mRFP undergoing exocytosis in PC12 cells coexpressing different versions of cplx-GFP.
Figure 2: Effect of cplx overexpression on NPY-mRFP exocytosis.
Figure 3: Slow and incomplete release of NPY-mRFP when cplx persists during fusion.
Figure 4: Rapid resealing of granules with persisting cplx.
Figure 5: Restricted lateral diffusion of FM dyes with persisting cplx.
Figure 6: NPY-mRFP exocytosis in cells depleted of cplx.
Figure 7: Reduced transmitter release with persisting cplx.

Similar content being viewed by others

References

  1. Jahn, R. & Scheller, R.H. SNAREs—engines for membrane fusion. Nat. Rev. Mol. Cell Biol. 7, 631–643 (2006).

    Article  CAS  Google Scholar 

  2. Weber, T. et al. SNAREpins: minimal machinery for membrane fusion. Cell 92, 759–772 (1998).

    Article  CAS  Google Scholar 

  3. Han, X., Wang, C.T., Bai, J., Chapman, E.R. & Jackson, M.B. Transmembrane segments of syntaxin line the fusion pore of Ca2+-triggered exocytosis. Science 304, 289–292 (2004).

    Article  CAS  Google Scholar 

  4. Kesavan, J., Borisovska, M. & Bruns, D. v-SNARE actions during Ca2+-triggered exocytosis. Cell 131, 351–363 (2007).

    Article  CAS  Google Scholar 

  5. Jackson, M.B. & Chapman, E.R. Fusion pores and fusion machines in Ca2+-triggered exocytosis. Annu. Rev. Biophys. Biomol. Struct. 35, 135–160 (2006).

    Article  CAS  Google Scholar 

  6. Ungermann, C., Sato, K. & Wickner, W. Defining the functions of trans-SNARE pairs. Nature 396, 543–548 (1998).

    Article  CAS  Google Scholar 

  7. Peters, C. et al. Trans-complex formation by proteolipid channels in the terminal phase of membrane fusion. Nature 409, 581–588 (2001).

    Article  CAS  Google Scholar 

  8. Merrifield, C.J., Feldman, M.E., Wan, L. & Almers, W. Imaging actin and dynamin recruitment during invagination of single clathrin-coated pits. Nat. Cell Biol. 4, 691–698 (2002).

    Article  CAS  Google Scholar 

  9. McMahon, H.T., Missler, M., Li, C. & Südhof, T.C. Complexins: cytosolic proteins that regulate SNAP receptor function. Cell 83, 111–119 (1995).

    Article  CAS  Google Scholar 

  10. Chen, X. et al. Three-dimensional structure of the complexin/SNARE complex. Neuron 33, 397–409 (2002).

    Article  CAS  Google Scholar 

  11. Bracher, A., Kadlec, J., Betz, H. & Weissenhorn, W. X-ray structure of a neuronal complexin-SNARE complex from squid. J. Biol. Chem. 277, 26517–26523 (2002).

    Article  CAS  Google Scholar 

  12. Weninger, K., Bowen, M.E., Choi, U.B., Chu, S. & Brunger, A.T. Accessory proteins stabilize the acceptor complex for synaptobrevin, the 1:1 syntaxin/SNAP-25 complex. Structure 16, 308–320 (2008).

    Article  CAS  PubMed  Google Scholar 

  13. Guan, R., Dai, H. & Rizo, J. Binding of the Munc13-1 MUN domain to membrane-anchored SNARE complexes. Biochemistry 47, 1474–1481 (2008).

    Article  CAS  Google Scholar 

  14. Yoon, T.Y. et al. Complexin and Ca2+ stimulate SNARE-mediated membrane fusion. Nat. Struct. Mol. Biol. 15, 707–713 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. Giraudo, C.G., Eng, W.S., Melia, T.J. & Rothman, J.E. A clamping mechanism involved in SNARE-dependent exocytosis. Science 313, 676–680 (2006).

    Article  CAS  Google Scholar 

  16. Tang, J. et al. A complexin/synaptotagmin 1 switch controls fast synaptic vesicle exocytosis. Cell 126, 1175–1187 (2006).

    Article  CAS  Google Scholar 

  17. Xue, M. et al. Distinct domains of complexin I differentially regulate neurotransmitter release. Nat. Struct. Mol. Biol. 14, 949–958 (2007).

    Article  CAS  PubMed  Google Scholar 

  18. Cai, H. et al. Complexin II plays a positive role in Ca2+-triggered exocytosis by facilitating vesicle priming. Proc. Natl. Acad. Sci. USA 105, 19538–19543 (2008).

    Article  CAS  Google Scholar 

  19. Taraska, J.W., Perrais, D., Ohara-Imaizumi, M., Nagamatsu, S. & Almers, W. Secretory granules are recaptured largely intact after stimulated exocytosis in cultured endocrine cells. Proc. Natl. Acad. Sci. USA 100, 2070–2075 (2003).

    Article  CAS  Google Scholar 

  20. Pabst, S. et al. Selective interaction of complexin with the neuronal SNARE complex. Determination of the binding regions. J. Biol. Chem. 275, 19808–19818 (2000).

    Article  CAS  Google Scholar 

  21. Miesenböck, G., De Angelis, D.A. & Rothman, J.E. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394, 192–195 (1998).

    Article  PubMed  Google Scholar 

  22. Perrais, D., Kleppe, I.C., Taraska, J.W. & Almers, W. Recapture after exocytosis causes differential retention of protein in granules of bovine chromaffin cells. J. Physiol. (Lond.) 560, 413–428 (2004).

    Article  CAS  Google Scholar 

  23. Ryan, T.A., Smith, S.J. & Reuter, H. The timing of synaptic vesicle endocytosis. Proc. Natl. Acad. Sci. USA 93, 5567–5571 (1996).

    Article  CAS  Google Scholar 

  24. Pucadyil, T.J. & Chattopadhyay, A. Effect of cholesterol on lateral diffusion of fluorescent lipid probes in native hippocampal membranes. Chem. Phys. Lipids 143, 11–21 (2006).

    Article  CAS  Google Scholar 

  25. Schmoranzer, J., Goulian, M., Axelrod, D. & Simon, S.M. Imaging constitutive exocytosis with total internal reflection fluorescence microscopy. J. Cell Biol. 149, 23–32 (2000).

    Article  CAS  PubMed  Google Scholar 

  26. Corcoran, J.J., Wilson, S.P. & Kirshner, N. Flux of catecholamines through chromaffin vesicles in cultured bovine adrenal medullary cells. J. Biol. Chem. 259, 6208–6214 (1984).

    CAS  Google Scholar 

  27. Fang, Q. et al. The role of the C terminus of the SNARE protein SNAP-25 in fusion pore opening and a model for fusion pore mechanics. Proc. Natl. Acad. Sci. USA 105, 15388–15392 (2008).

    Article  CAS  Google Scholar 

  28. Bretou, M., Anne, C. & Darchen, F. A fast mode of membrane fusion dependent on tight SNARE zippering. J. Neurosci. 28, 8470–8476 (2008).

    Article  CAS  Google Scholar 

  29. Wang, C.T. et al. Different domains of synaptotagmin control the choice between kiss-and-run and full fusion. Nature 424, 943–947 (2003).

    Article  CAS  PubMed  Google Scholar 

  30. Gong, L.W., de Toledo, G.A. & Lindau, M. Exocytotic catecholamine release is not associated with cation flux through channels in the vesicle membrane, but Na+ influx through the fusion pore. Nat. Cell Biol. 9, 915–922 (2007).

    Article  CAS  PubMed  Google Scholar 

  31. Reim, K. et al. Complexins regulate a late step in Ca2+-dependent neurotransmitter release. Cell 104, 71–81 (2001).

    Article  CAS  Google Scholar 

  32. Chapman, E.R. Synaptotagmin: a Ca2+ sensor that triggers exocytosis? Nat. Rev. Mol. Cell Biol. 3, 498–508 (2002).

    Article  CAS  Google Scholar 

  33. An, S. & Zenisek, D. Regulation of exocytosis in neurons and neuroendocrine cells. Curr. Opin. Neurobiol. 14, 522–530 (2004).

    Article  CAS  Google Scholar 

  34. Taraska, J.W. & Almers, W. Bilayers merge even when exocytosis is transient. Proc. Natl. Acad. Sci. USA 101, 8780–8785 (2004).

    Article  CAS  Google Scholar 

  35. Wu, Y., Yeh, F.L., Mao, F. & Chapman, E.R. Biophysical characterization of styryl dye-membrane interactions. Biophys. J. 97, 101–109 (2009).

    Article  CAS  PubMed  Google Scholar 

  36. Abderrahmani, A. et al. Complexin I regulates glucose-induced secretion in pancreatic beta-cells. J. Cell Sci. 117, 2239–2247 (2004).

    Article  CAS  Google Scholar 

  37. Tadokoro, S., Nakanishi, M. & Hirashima, N. Complexin II facilitates exocytotic release in mast cells by enhancing Ca2+ sensitivity of the fusion process. J. Cell Sci. 118, 2239–2246 (2005).

    Article  CAS  Google Scholar 

  38. Huntwork, S. & Littleton, J.T. A complexin fusion clamp regulates spontaneous neurotransmitter release and synaptic growth. Nat. Neurosci. 10, 1235–1237 (2007).

    Article  CAS  Google Scholar 

  39. Xue, M. et al. Complexins facilitate neurotransmitter release at excitatory and inhibitory synapses in mammalian central nervous system. Proc. Natl. Acad. Sci. USA 105, 7875–7880 (2008).

    Article  CAS  Google Scholar 

  40. Maximov, A., Tang, J., Yang, X., Pang, Z.P. & Südhof, T.C. Complexin controls the force transfer from SNARE complexes to membranes in fusion. Science 323, 516–521 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. Itakura, M., Misawa, H., Sekiguchi, M., Takahashi, S. & Takahashi, M. Transfection analysis of functional roles of complexin I and II in the exocytosis of two different types of secretory vesicles. Biochem. Biophys. Res. Commun. 265, 691–696 (1999).

    Article  CAS  Google Scholar 

  42. Archer, D.A., Graham, M.E. & Burgoyne, R.D. Complexin regulates the closure of the fusion pore during regulated vesicle exocytosis. J. Biol. Chem. 277, 18249–18252 (2002).

    Article  CAS  Google Scholar 

  43. Schaub, J.R., Lu, X., Doneske, B., Shin, Y.K. & McNew, J.A. Hemifusion arrest by complexin is relieved by Ca2+-synaptotagmin I. Nat. Struct. Mol. Biol. 13, 748–750 (2006).

    Article  CAS  Google Scholar 

  44. Giraudo, C.G. et al. Alternative zippering as an on-off switch for SNARE-mediated fusion. Science 323, 512–516 (2009).

    Article  CAS  PubMed  Google Scholar 

  45. Pabst, S. et al. Rapid and selective binding to the synaptic SNARE complex suggests a modulatory role of complexins in neuroexocytosis. J. Biol. Chem. 277, 7838–7848 (2002).

    Article  CAS  Google Scholar 

  46. Li, Y., Augustine, G.J. & Weninger, K. Kinetics of complexin binding to the SNARE complex: correcting single molecule FRET measurements for hidden events. Biophys. J. 93, 2178–2187 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Edwardson, J.M. et al. Expression of mutant huntingtin blocks exocytosis in PC12 cells by depletion of complexin II. J. Biol. Chem. 278, 30849–30853 (2003).

    Article  CAS  Google Scholar 

  48. An, S.J. & Almers, W. Tracking SNARE complex formation in live endocrine cells. Science 306, 1042–1046 (2004).

    Article  CAS  Google Scholar 

  49. Axelrod, D., Koppel, D.E., Schlessinger, J., Elson, E. & Webb, W.W. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16, 1055–1069 (1976).

    Article  CAS  PubMed  Google Scholar 

  50. Grabner, C.P., Price, S.D., Lysakowski, A. & Fox, A.P. Mouse chromaffin cells have two populations of dense core vesicles. J. Neurophysiol. 94, 2093–2104 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank F. Rivera-Molina and S. Viviano for technical assistance and P. De Camilli and D. Toomre for comments on the manuscript. This work was supported by McKnight and Kinship Foundations and US National Institutes of Health grants EY000785 and EY018111.

Author information

Authors and Affiliations

Authors

Contributions

S.J.A. designed, conducted and analyzed the research and wrote the manuscript. C.P.G. performed and analyzed the amperometry experiments. D.Z. supervised the project.

Corresponding author

Correspondence to Seong J An.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–16 (PDF 2804 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

An, S., Grabner, C. & Zenisek, D. Real-time visualization of complexin during single exocytic events. Nat Neurosci 13, 577–583 (2010). https://doi.org/10.1038/nn.2532

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2532

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing