Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dichotomy of functional organization in the mouse auditory cortex

Abstract

The sensory areas of the cerebral cortex possess multiple topographic representations of sensory dimensions. The gradient of frequency selectivity (tonotopy) is the dominant organizational feature in the primary auditory cortex, whereas other feature-based organizations are less well established. We probed the topographic organization of the mouse auditory cortex at the single-cell level using in vivo two-photon Ca2+ imaging. Tonotopy was present on a large scale but was fractured on a fine scale. Intensity tuning, which is important in level-invariant representation, was observed in individual cells, but was not topographically organized. The presence or near absence of putative subthreshold responses revealed a dichotomy in topographic organization. Inclusion of subthreshold responses revealed a topographic clustering of neurons with similar response properties, whereas such clustering was absent in supra-threshold responses. This dichotomy indicates that groups of nearby neurons with locally shared inputs can perform independent parallel computations in the auditory cortex.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Functional two-photon Ca2+ imaging in mouse ACX.
Figure 2: ACX Ca2+ responses are unreliable.
Figure 3: Large-scale organization of ACX probed with single-cell resolution.
Figure 4: Tonotopy exists in A1 and AAF on a large scale, but not on small spatial scales.
Figure 5: High local variability in bandwidth.
Figure 6: Intensity tuning and local heterogeneity in noise responses.
Figure 7: Lack of organized intensity maps.
Figure 8: ACX cells receive shared inputs, but respond differentially.

References

  1. 1

    Mountcastle, V.B. The columnar organization of the neocortex. Brain 120, 701–722 (1997).

    Article  Google Scholar 

  2. 2

    Hubel, D.H. & Wiesel, T.N. Ferrier lecture. Functional architecture of macaque monkey visual cortex. Proc. R. Soc. Lond. B 198, 1–59 (1977).

    CAS  Article  Google Scholar 

  3. 3

    Schreiner, C.E. & Winer, J.A. Auditory cortex mapmaking: principles, projections, and plasticity. Neuron 56, 356–365 (2007).

    CAS  Article  Google Scholar 

  4. 4

    Koulakov, A.A., Hromadka, T. & Zador, A.M. Correlated connectivity and the distribution of firing rates in the neocortex. J. Neurosci. 29, 3685–3694 (2009).

    CAS  Article  Google Scholar 

  5. 5

    Hromádka, T., Deweese, M.R. & Zador, A.M. Sparse representation of sounds in the unanesthetized auditory cortex. PLoS Biol. 6, e16 (2008).

    Article  Google Scholar 

  6. 6

    Schreiner, C.E., Read, H.L. & Sutter, M.L. Modular organization of frequency integration in primary auditory cortex. Annu. Rev. Neurosci. 23, 501–529 (2000).

    CAS  Article  Google Scholar 

  7. 7

    Bizley, J.K., Nodal, F.R., Nelken, I. & King, A.J. Functional organization of ferret auditory cortex. Cereb. Cortex 15, 1637–1653 (2005).

    Article  Google Scholar 

  8. 8

    Merzenich, M.M., Knight, P.L. & Roth, G.L. Cochleotopic organization of primary auditory cortex in the cat. Brain Res. 63, 343–346 (1973).

    CAS  Article  Google Scholar 

  9. 9

    Ehret, G. The auditory cortex. J. Comp. Physiol. [A] 181, 547–557 (1997).

    CAS  Article  Google Scholar 

  10. 10

    Recanzone, G.H., Schreiner, C.E., Sutter, M.L., Beitel, R.E. & Merzenich, M.M. Functional organization of spectral receptive fields in the primary auditory cortex of the owl monkey. J. Comp. Neurol. 415, 460–481 (1999).

    CAS  Article  Google Scholar 

  11. 11

    Nelken, I. et al. Large-scale organization of ferret auditory cortex revealed using continuous acquisition of intrinsic optical signals. J. Neurophysiol. 92, 2574–2588 (2004).

    Article  Google Scholar 

  12. 12

    Kalatsky, V.A., Polley, D.B., Merzenich, M.M., Schreiner, C.E. & Stryker, M.P. Fine functional organization of auditory cortex revealed by Fourier optical imaging. Proc. Natl. Acad. Sci. USA 102, 13325–13330 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Blasdel, G.G. & Salama, G. Voltage-sensitive dyes reveal a modular organization in monkey striate cortex. Nature 321, 579–585 (1986).

    CAS  Article  Google Scholar 

  14. 14

    Tsytsarev, V., Fukuyama, H., Pope, D., Pumbo, E. & Kimura, M. Optical imaging of interaural time difference representation in rat auditory cortex. Front. Neuroengineering 2, 2 (2009).

    Article  Google Scholar 

  15. 15

    Stosiek, C., Garaschuk, O., Holthoff, K. & Konnerth, A. In vivo two-photon calcium imaging of neuronal networks. Proc. Natl. Acad. Sci. USA 100, 7319–7324 (2003).

    CAS  Article  Google Scholar 

  16. 16

    Svoboda, K. & Yasuda, R. Principles of two-photon excitation microscopy and its applications to neuroscience. Neuron 50, 823–839 (2006).

    CAS  Article  Google Scholar 

  17. 17

    Ohki, K., Chung, S., Ch'ng, Y.H., Kara, P. & Reid, R.C. Functional imaging with cellular resolution reveals precise micro-architecture in visual cortex. Nature 433, 597–603 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Yasuda, R. et al. Imaging calcium concentration dynamics in small neuronal compartments. Sci. STKE 2004, pl5 (2004).

    PubMed  Google Scholar 

  19. 19

    Thomas, D. et al. A comparison of fluorescent Ca2+ indicator properties and their use in measuring elementary and global Ca2+ signals. Cell Calcium 28, 213–223 (2000).

    CAS  Article  Google Scholar 

  20. 20

    Paredes, R.M., Etzler, J.C., Watts, L.T., Zheng, W. & Lechleiter, J.D. Chemical calcium indicators. Methods 46, 143–151 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Shoham, S., O'Connor, D.H. & Segev, R. How silent is the brain: is there a “dark matter” problem in neuroscience? J. Comp. Physiol. A Neuroethol. Sens. Neural Behav. Physiol. 192, 777–784 (2006).

    Article  Google Scholar 

  22. 22

    Stiebler, I., Neulist, R., Fichtel, I. & Ehret, G. The auditory cortex of the house mouse: left-right differences, tonotopic organization and quantitative analysis of frequency representation. J. Comp. Physiol. [A] 181, 559–571 (1997).

    CAS  Article  Google Scholar 

  23. 23

    Wang, X. & Kadia, S.C. Differential representation of species-specific primate vocalizations in the auditory cortices of marmoset and cat. J. Neurophysiol. 86, 2616–2620 (2001).

    CAS  Article  Google Scholar 

  24. 24

    Galindo-Leon, E.E., Lin, F.G. & Liu, R.C. Inhibitory plasticity in a lateral band improves cortical detection of natural vocalizations. Neuron 62, 705–716 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Barbour, D.L. & Wang, X. Contrast tuning in auditory cortex. Science 299, 1073–1075 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Kowalski, N., Depireux, D.A. & Shamma, S.A. Analysis of dynamic spectra in ferret primary auditory cortex. I. Characteristics of single-unit responses to moving ripple spectra. J. Neurophysiol. 76, 3503–3523 (1996).

    CAS  Article  Google Scholar 

  27. 27

    Wang, X., Lu, T., Snider, R.K. & Liang, L. Sustained firing in auditory cortex evoked by preferred stimuli. Nature 435, 341–346 (2005).

    CAS  Article  Google Scholar 

  28. 28

    deCharms, R.C., Blake, D.T. & Merzenich, M.M. Optimizing sound features for cortical neurons. Science 280, 1439–1443 (1998).

    CAS  Article  Google Scholar 

  29. 29

    Nelken, I., Rotman, Y. & Bar Yosef, O. Responses of auditory-cortex neurons to structural features of natural sounds. Nature 397, 154–157 (1999).

    CAS  Article  Google Scholar 

  30. 30

    Sadagopan, S. & Wang, X. Level invariant representation of sounds by populations of neurons in primary auditory cortex. J. Neurosci. 28, 3415–3426 (2008).

    CAS  Article  Google Scholar 

  31. 31

    Polley, D.B., Read, H.L., Storace, D.A. & Merzenich, M.M. Multiparametric auditory receptive field organization across five cortical fields in the albino rat. J. Neurophysiol. 97, 3621–3638 (2007).

    Article  Google Scholar 

  32. 32

    Schummers, J., Yu, H. & Sur, M. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320, 1638–1643 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Li, Y., Van Hooser, S.D., Mazurek, M., White, L.E. & Fitzpatrick, D. Experience with moving visual stimuli drives the early development of cortical direction selectivity. Nature 456, 952–956 (2008).

    CAS  Article  Google Scholar 

  34. 34

    Smetters, D., Majewska, A. & Yuste, R. Detecting action potentials in neuronal populations with calcium imaging. Methods 18, 215–221 (1999).

    CAS  Article  Google Scholar 

  35. 35

    Young, E.D. & Sachs, M.B. Representation of steady-state vowels in the temporal aspects of the discharge patterns of populations of auditory-nerve fibers. J. Acoust. Soc. Am. 66, 1381–1403 (1979).

    CAS  Article  Google Scholar 

  36. 36

    Bandyopadhyay, S. & Young, E.D. Discrimination of voiced stop consonants based on auditory nerve discharges. J. Neurosci. 24, 531–541 (2004).

    CAS  Article  Google Scholar 

  37. 37

    Sato, T.R., Gray, N.W., Mainen, Z.F. & Svoboda, K. The functional microarchitecture of the mouse barrel cortex. PLoS Biol. 5, e189 (2007).

    Article  Google Scholar 

  38. 38

    Song, S., Sjostrom, P.J., Reigl, M., Nelson, S. & Chklovskii, D.B. Highly nonrandom features of synaptic connectivity in local cortical circuits. PLoS Biol. 3, e68 (2005).

    Article  Google Scholar 

  39. 39

    Yoshimura, Y., Dantzker, J.L. & Callaway, E.M. Excitatory cortical neurons form fine-scale functional networks. Nature 433, 868–873 (2005).

    CAS  Article  Google Scholar 

  40. 40

    Yoshimura, Y. & Callaway, E.M. Fine-scale specificity of cortical networks depends on inhibitory cell type and connectivity. Nat. Neurosci. 8, 1552–1559 (2005).

    CAS  Article  Google Scholar 

  41. 41

    Evans, E.F., Ross, H.F. & Whitfield, I.C. The spatial distribution of unit characteristic frequency in the primary auditory cortex of the cat. J. Physiol. (Lond.) 179, 238–247 (1965).

    CAS  Article  Google Scholar 

  42. 42

    Goldstein, M.H. Jr. & Abeles, M. Note on tonotopic organization of primary auditory cortex in the cat. Brain Res. 100, 188–191 (1975).

    Article  Google Scholar 

  43. 43

    Goldstein, M.H. Jr., Abeles, M., Daly, R.L. & McIntosh, J. Functional architecture in cat primary auditory cortex: tonotopic organization. J. Neurophysiol. 33, 188–197 (1970).

    Article  Google Scholar 

  44. 44

    Recanzone, G.H., Guard, D.C. & Phan, M.L. Frequency and intensity response properties of single neurons in the auditory cortex of the behaving macaque monkey. J. Neurophysiol. 83, 2315–2331 (2000).

    CAS  Article  Google Scholar 

  45. 45

    Stronks, H.C., Aarts, M.C. & Klis, S.F. Effects of isoflurane on auditory evoked potentials in the cochlea and brainstem of guinea pigs. Hear. Res. 260, 20–29 (2010).

    CAS  Article  Google Scholar 

  46. 46

    Wallace, M.N. & Palmer, A.R. Laminar differences in the response properties of cells in the primary auditory cortex. Exp. Brain Res. 184, 179–191 (2008).

    CAS  Article  Google Scholar 

  47. 47

    Nimmerjahn, A., Kirchhoff, F., Kerr, J.N. & Helmchen, F. Sulforhodamine 101 as a specific marker of astroglia in the neocortex in vivo. Nat. Methods 1, 31–37 (2004).

    CAS  Article  Google Scholar 

  48. 48

    Keifer, J., Vyas, D. & Houk, J.C. Sulforhodamine labeling of neural circuits engaged in motor pattern generation in the in vitro turtle brainstem-cerebellum. J. Neurosci. 12, 3187–3199 (1992).

    CAS  Article  Google Scholar 

  49. 49

    Moreaux, L. & Laurent, G. A simple method to reconstruct firing rates from dendritic calcium signals. Front. Neurosci. 2, 176–185 (2008).

    CAS  Article  Google Scholar 

  50. 50

    Zhao, C., Kao, J.P.Y. & Kanold, P.O. Functional excitatory microcircuits in neonatal cortex connect thalamus and layer 4. J. Neurosci. 29, 15479–11488 (2009).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors thank D. Winkowski for many helpful comments and help with imaging and J. Zemskova and A. Sheikh for histological help. This work was supported by the National Institute on Deafness and Other Communications Disorders (R21DC009454 and R01DC009607 to P.O.K., and RO1DC005779 to S.A.S.), Air Force Office of Scientific Research Defense University Research Instrumentation Program (S.A.S. and P.O.K.) and an ISR Seed Grant (S.A.S. and P.O.K.).

Author information

Affiliations

Authors

Contributions

S.B. performed the in vivo studies. S.B. and P.O.K. carried out the in vitro studies. P.O.K. planned and supervised the project. S.B., S.A.S. and P.O.K. contributed to the experimental design, discussed the results and wrote the manuscript.

Corresponding author

Correspondence to Patrick O Kanold.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6 (PDF 7475 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Bandyopadhyay, S., Shamma, S. & Kanold, P. Dichotomy of functional organization in the mouse auditory cortex. Nat Neurosci 13, 361–368 (2010). https://doi.org/10.1038/nn.2490

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing