Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Persistent neural activity in the human frontal cortex when maintaining space that is off the map

Abstract

During the maintenance of visuospatial information, neural activity in the frontal eye field (FEF) persists and is thought to be an important neural mechanism for visual working memory. We used functional magnetic resonance imaging to examine whether human FEF activity persists when maintaining auditory space and whether it is selective for retinal versus extra-retinal space. Subjects performed an audiospatial working-memory task using sounds recorded from microphones placed in each subject's ear canals, which preserved the interaural time and level differences that are critical for sound localization. Putative FEF activity persisted when maintaining auditory-cued space, even for locations behind the head to which it is impossible to make saccades. Therefore, human FEF activity represents both retinal and extra-retinal space.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Task design and behavioral data.
Figure 2: Surface-based statistical maps.
Figure 3: Group-averaged BOLD time courses time locked to the presentation of the sample sound in the three ROIs.
Figure 4: Group-averaged BOLD time courses time locked to the presentation of the sample sound in the sPCS.
Figure 5: Scatter plots quantifying the laterality bias in the sPCS.
Figure 6: Group comparisons of auditory spatial working memory with saccade generation and visual spatial working memory.
Figure 7: Individual subject comparisons of auditory- and visual-cued spatial-working memory.
Figure 8: Individual subject BOLD time courses from the sPCS ROI derived from the saccade localizer task.

Similar content being viewed by others

References

  1. Funahashi, S., Bruce, C.J. & Goldman-Rakic, P.S. Dorsolateral prefrontal lesions and oculomotor delayed-response performance: evidence for mnemonic 'scotomas'. J. Neurosci. 13, 1479–1497 (1993).

    Article  CAS  Google Scholar 

  2. Curtis, C.E. & D'Esposito, M. The effects of prefrontal lesions on working memory performance and theory. Cogn. Affect. Behav. Neurosci. 4, 528–539 (2004).

    Article  Google Scholar 

  3. Rivaud, S., Müri, R.M., Gaymard, B., Vermersch, A.I. & Pierrot-Deseilligny, C. Eye movement disorders after frontal eye field lesions in humans. Exp. Brain Res. 102, 110–120 (1994).

    Article  CAS  Google Scholar 

  4. Dias, E.C. & Segraves, M.A. Muscimol-induced inactivation of monkey frontal eye field: effects on visually and memory-guided saccades. J. Neurophysiol. 81, 2191–2214 (1999).

    Article  CAS  Google Scholar 

  5. Ploner, C.J., Rivaud-Pechoux, S., Gaymard, B.M., Agid, Y. & Pierrot-Deseilligny, C. Errors of memory-guided saccades in humans with lesions of the frontal eye field and the dorsolateral prefrontal cortex. J. Neurophysiol. 82, 1086–1090 (1999).

    Article  CAS  Google Scholar 

  6. Bruce, C.J. & Goldberg, M.E. Primate frontal eye fields. I. Single neurons discharging before saccades. J. Neurophysiol. 53, 603–635 (1985).

    Article  CAS  Google Scholar 

  7. Funahashi, S., Bruce, C.J. & Goldman-Rakic, P.S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 61, 331–349 (1989).

    Article  CAS  Google Scholar 

  8. Chafee, M.V. & Goldman-Rakic, P.S. Matching patterns of activity in primate prefrontal area 8a and parietal area 7ip neurons during a spatial working memory task. J. Neurophysiol. 79, 2919–2940 (1998).

    Article  CAS  Google Scholar 

  9. Sommer, M.A. & Wurtz, R.H. Frontal eye field sends delay activity related to movement, memory and vision to the superior colliculus. J. Neurophysiol. 85, 1673–1685 (2001).

    Article  CAS  Google Scholar 

  10. Umeno, M.M. & Goldberg, M.E. Spatial processing in the monkey frontal eye field. II. Memory responses. J. Neurophysiol. 86, 2344–2352 (2001).

    Article  CAS  Google Scholar 

  11. Curtis, C.E. & D'Esposito, M. Persistent activity in the prefrontal cortex during working memory. Trends Cogn. Sci. 7, 415–423 (2003).

    Article  Google Scholar 

  12. Treutwein, B. Adaptive psychophysical procedures. Vision Res. 35, 2503–2522 (1995).

    Article  CAS  Google Scholar 

  13. Srimal, R. & Curtis, C.E. Persistent neural activity during the maintenance of spatial position in working memory. Neuroimage 39, 455–468 (2008).

    Article  Google Scholar 

  14. Curtis, C.E. & D'Esposito, M. Selection and maintenance of saccade goals in the human frontal eye fields. J. Neurophysiol. 95, 3923–3927 (2006).

    Article  Google Scholar 

  15. Curtis, C.E., Rao, V.Y. & D'Esposito, M. Maintenance of spatial and motor codes during oculomotor delayed response tasks. J. Neurosci 24, 3944–3952 (2004).

    Article  CAS  Google Scholar 

  16. Brown, M.R.G. et al. Comparison of memory- and visually guided saccades using event-related fMRI. J. Neurophysiol. 91, 873–889 (2004).

    Article  CAS  Google Scholar 

  17. Russo, G.S. & Bruce, C.J. Frontal eye field activity preceding aurally guided saccades. J. Neurophysiol. 71, 1250–1253 (1994).

    Article  CAS  Google Scholar 

  18. Kikuchi-Yorioka, Y. & Sawaguchi, T. Parallel visuospatial and audiospatial working memory processes in the monkey dorsolateral prefrontal cortex. Nat. Neurosci. 3, 1075–1076 (2000).

    Article  CAS  Google Scholar 

  19. Artchakov, D. et al. Processing of auditory and visual location information in the monkey prefrontal cortex. Exp. Brain Res. 180, 469–479 (2007).

    Article  Google Scholar 

  20. Goldberg, M.E. & Bruce, C.J. Primate frontal eye fields. III. Maintenance of a spatially accurate saccade signal. J. Neurophysiol. 64, 489–508 (1990).

    Article  CAS  Google Scholar 

  21. Russo, G.S. & Bruce, C.J. Effect of eye position within the orbit on electrically elicited saccadic eye movements: a comparison of the macaque monkey's frontal and supplementary eye fields. J. Neurophysiol. 69, 800–818 (1993).

    Article  CAS  Google Scholar 

  22. Schall, J.D., Morel, A., King, D.J. & Bullier, J. Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams. J. Neurosci. 15, 4464–4487 (1995).

    Article  CAS  Google Scholar 

  23. Tehovnik, E.J., Sommer, M.A., Chou, I.H., Slocum, W.M. & Schiller, P.H. Eye fields in the frontal lobes of primates. Brain Res. Brain Res. Rev. 32, 413–448 (2000).

    Article  CAS  Google Scholar 

  24. Chen, L.L. Head movements evoked by electrical stimulation in the frontal eye field of the monkey: evidence for Independent eye and head control. J. Neurophysiol. 95, 3528–3542 (2006).

    Article  Google Scholar 

  25. Elsley, J.K., Nagy, B., Cushing, S.L. & Corneil, B.D. Widespread presaccadic recruitment of neck muscles by stimulation of the primate frontal eye fields. J. Neurophysiol. 98, 1333–1354 (2007).

    Article  Google Scholar 

  26. Knight, T.A. & Fuchs, A.F. Contribution of the frontal eye field to gaze shifts in the head-unrestrained monkey: effects of microstimulation. J. Neurophysiol. 97, 618–634 (2007).

    Article  Google Scholar 

  27. Garg, A., Schwartz, D. & Stevens, A.A. Orienting auditory spatial attention engages frontal eye fields and medial occipital cortex in congenitally blind humans. Neuropsychologia 45, 2307–2321 (2007).

    Article  Google Scholar 

  28. Mullette-Gillman, O.A., Cohen, Y.E. & Groh, J.M. Eye-centered, head-centered and complex coding of visual and auditory targets in the intraparietal sulcus. J. Neurophysiol. 94, 2331–2352 (2005).

    Article  Google Scholar 

  29. Mullette-Gillman, O.A., Cohen, Y.E. & Groh, J.M. Motor-related signals in the intraparietal cortex encode locations in a hybrid, rather than eye-centered, reference frame. Cereb. Cortex 19, 1761–1775 (2009).

    Article  Google Scholar 

  30. Soechting, J.F. & Flanders, M. Moving in three-dimensional space: frames of reference, vectors and coordinate systems. Annu. Rev. Neurosci. 15, 167–191 (1992).

    Article  CAS  Google Scholar 

  31. Schlack, A., Sterbing-D'Angelo, S.J., Hartung, K., Hoffmann, K.-P. & Bremmer, F. Multisensory space representations in the macaque ventral intraparietal area. J. Neurosci. 25, 4616–4625 (2005).

    Article  CAS  Google Scholar 

  32. Andersen, R.A. & Zipser, D. The role of the posterior parietal cortex in coordinate transformations for visual-motor integration. Can. J. Physiol. Pharmacol. 66, 488–501 (1988).

    Article  CAS  Google Scholar 

  33. Mazzoni, P., Bracewell, R.M., Barash, S. & Andersen, R.A. Spatially tuned auditory responses in area LIP of macaques performing delayed memory saccades to acoustic targets. J. Neurophysiol. 75, 1233–1241 (1996).

    Article  CAS  Google Scholar 

  34. Stricanne, B., Andersen, R.A. & Mazzoni, P. Eye-centered, head-centered and intermediate coding of remembered sound locations in area LIP. J. Neurophysiol. 76, 2071–2076 (1996).

    Article  CAS  Google Scholar 

  35. Xing, J. & Andersen, R.A. Models of the posterior parietal cortex which perform multimodal integration and represent space in several coordinate frames. J. Cogn. Neurosci. 12, 601–614 (2000).

    Article  CAS  Google Scholar 

  36. Paus, T. Location and function of the human frontal eye-field: a selective review. Neuropsychologia 34, 475–483 (1996).

    Article  CAS  Google Scholar 

  37. Ikkai, A. & Curtis, C.E. Cortical activity time locked to the shift and maintenance of spatial attention. Cereb. Cortex 18, 1384–1394 (2008).

    Article  Google Scholar 

  38. Curtis, C.E. & Connolly, J.D. Saccade preparation signals in the human frontal and parietal cortices. J. Neurophysiol. 99, 133–145 (2008).

    Article  Google Scholar 

  39. Biswal, B.B. & Hyde, J.S. Contour-based registration technique to differentiate between task-activated and head motion-induced signal variations in fMRI. Magn. Reson. Med. 38, 470–476 (1997).

    Article  CAS  Google Scholar 

  40. Zarahn, E., Aguirre, G. & D'Esposito, M. A trial-based experimental design for fMRI. Neuroimage 6, 122–138 (1997).

    Article  CAS  Google Scholar 

  41. Worsley, K.J. & Friston, K.J. Analysis of fMRI time-series revisited—again. Neuroimage 2, 173–181 (1995).

    Article  CAS  Google Scholar 

  42. Van Essen, D.C. Population-average, landmark- and surface-based (PALS) atlas of human cerebral cortex. Neuroimage 28, 635–662 (2005).

    Article  Google Scholar 

  43. Holmes, A.P., Blair, R.C., Watson, J.D. & Ford, I. Nonparametric analysis of statistic images from functional mapping experiments. J. Cereb. Blood Flow Metab. 16, 7–22 (1996).

    Article  CAS  Google Scholar 

  44. Nichols, T.E. & Holmes, A.P. Nonparametric permutation tests for functional neuroimaging: a primer with examples. Hum. Brain Mapp. 15, 1–25 (2002).

    Article  Google Scholar 

  45. Curtis, C.E., Rao, V.Y. & D'Esposito, M. Maintenance of spatial and motor codes during oculomotor delayed response tasks. J. Neurosci. 24, 3944–3952 (2004).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank R. Srimal, L. Deouell, S. Inati and K. Sanzenbach for technical support and anonymous reviewers for helpful suggestions. This work was funded by the US National Institutes of Health (R01 EY016407).

Author information

Authors and Affiliations

Authors

Contributions

K.J.T. and C.E.C. designed and conducted the experiment, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Clayton E Curtis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Tables 1 and 2, and Supplementary Results 1 and 2 (PDF 1359 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tark, KJ., Curtis, C. Persistent neural activity in the human frontal cortex when maintaining space that is off the map. Nat Neurosci 12, 1463–1468 (2009). https://doi.org/10.1038/nn.2406

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2406

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing