Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons

Abstract

In the visual system of the blowfly Calliphora vicina, neurons of the vertical system (VS cells) integrate wide-field motion information from a retinotopic array of local motion detectors. In vivo calcium imaging reveals two distinct and separate receptive fields in these cells: a narrow dendritic receptive field corresponding to feedforward input from the local motion detectors and a broad axon terminal receptive field that additionally incorporates input from neighboring cells mediated by lateral axo-axonal gap junctions. We show that the axon terminal responses are linear interpolations of the dendritic responses, resulting in a robust population coding of optic flow parameters as predicted by previous modeling studies. Compartmental modeling shows that spatially separating the axonal gap junctions from the conductive load of the dendritic synapses increases the coupling strength of the gap junctions, making this interpolation possible.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Broadening of VS cells' receptive fields within single cells.
Figure 2: Voltage clamping of dendritic input.
Figure 3: Interpolation of dendritic responses in the axon terminal.
Figure 4: Axon terminal coupling of model VS cells results in more robust population coding than dendritic coupling.

Similar content being viewed by others

References

  1. Angelucci, A. & Bressloff, P.C. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons. Prog. Brain Res. 154, 93–120 (2006).

    Article  Google Scholar 

  2. Finn, I.M., Priebe, N.J. & Ferster, D. The emergence of contrast-invariant orientation tuning in simple cells of cat visual cortex. Neuron 54, 137–152 (2007).

    Article  CAS  Google Scholar 

  3. Olsen, S.R., Bhandawat, V. & Wilson, R.I. Excitatory interactions between olfactory processing channels in the Drosophila antennal lobe. Neuron 54, 89–103 (2007).

    Article  CAS  Google Scholar 

  4. Shang, Y., Claridge-Chang, A., Sjulson, L., Pypaert, M. & Miesenbock, G. Excitatory local circuits and their implications for olfactory processing in the fly antennal lobe. Cell 128, 601–612 (2007).

    Article  CAS  Google Scholar 

  5. MacLeod, K. & Laurent, G. Distinct mechanisms for synchronization and temporal patterning of odor-encoding neural assemblies. Science 274, 976–979 (1996).

    Article  CAS  Google Scholar 

  6. Mori, K., Nagao, H. & Yoshihara, Y. The olfactory bulb: coding and processing of odor molecule information. Science 286, 711–715 (1999).

    Article  CAS  Google Scholar 

  7. Lei, H., Christensen, T.A. & Hildebrand, J.G. Local inhibition modulates odor-evoked synchronization of glomerulus-specific output neurons. Nat. Neurosci. 5, 557–565 (2002).

    Article  CAS  Google Scholar 

  8. Olsen, S.R. & Wilson, R.I. Lateral presynaptic inhibition mediates gain control in an olfactory circuit. Nature 452, 956–960 (2008).

    Article  CAS  Google Scholar 

  9. DeVries, S.H. & Baylor, D.A. Synaptic circuitry of the retina and olfactory bulb. Cell 72, Suppl., 139–149 (1993).

    Article  Google Scholar 

  10. Balboa, R.M. & Grzywacz, N.M. The role of early retinal lateral inhibition: more than maximizing luminance information. Vis. Neurosci. 17, 77–89 (2000).

    Article  CAS  Google Scholar 

  11. Masland, R.H. The fundamental plan of the retina. Nat. Neurosci. 4, 877–886 (2001).

    Article  CAS  Google Scholar 

  12. Wassle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757 (2004).

    Article  Google Scholar 

  13. Yagi, T. Interaction between the soma and the axon terminal of retinal horizontal cells in Cyprinus carpio. J. Physiol. (Lond.) 375, 121–135 (1986).

    Article  CAS  Google Scholar 

  14. Agmon-Snir, H., Carr, C.E. & Rinzel, J. The role of dendrites in auditory coincidence detection. Nature 393, 268–272 (1998).

    Article  CAS  Google Scholar 

  15. Koch, C., Poggio, T. & Torre, V. Nonlinear interactions in a dendritic tree: localization, timing, and role in information processing. Proc. Natl. Acad. Sci. USA 80, 2799–2802 (1983).

    Article  CAS  Google Scholar 

  16. Archie, K.A. & Mel, B.W. A model for intradendritic computation of binocular disparity. Nat. Neurosci. 3, 54–63 (2000).

    Article  CAS  Google Scholar 

  17. Poirazi, P., Brannon, T. & Mel, B.W. Arithmetic of subthreshold synaptic summation in a model CA1 pyramidal cell. Neuron 37, 977–987 (2003).

    Article  CAS  Google Scholar 

  18. Polsky, A., Mel, B.W. & Schiller, J. Computational subunits in thin dendrites of pyramidal cells. Nat. Neurosci. 7, 621–627 (2004).

    Article  CAS  Google Scholar 

  19. Liu, G. Local structural balance and functional interaction of excitatory and inhibitory synapses in hippocampal dendrites. Nat. Neurosci. 7, 373–379 (2004).

    Article  CAS  Google Scholar 

  20. Poirazi, P., Brannon, T. & Mel, B.W. Pyramidal neuron as two-layer neural network. Neuron 37, 989–999 (2003).

    Article  CAS  Google Scholar 

  21. Haag, J. & Borst, A. Neural mechanism underlying complex receptive field properties of motion-sensitive interneurons. Nat. Neurosci. 7, 628–634 (2004).

    Article  CAS  Google Scholar 

  22. Farrow, K., Borst, A. & Haag, J. Sharing receptive fields with your neighbors: tuning the vertical system cells to wide field motion. J. Neurosci. 25, 3985–3993 (2005).

    Article  CAS  Google Scholar 

  23. Borst, A. & Haag, J. Neural networks in the cockpit of the fly. J. Comp. Physiol. [A] 188, 419–437 (2002).

    Article  CAS  Google Scholar 

  24. Krapp, H.G., Hengstenberg, B. & Hengstenberg, R. Dendritic structure and receptive-field organization of optic flow processing interneurons in the fly. J. Neurophysiol. 79, 1902–1917 (1998).

    Article  CAS  Google Scholar 

  25. Cuntz, H., Haag, J., Forstner, F., Segev, I. & Borst, A. Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons. Proc. Natl. Acad. Sci. USA 104, 10229–10233 (2007).

    Article  CAS  Google Scholar 

  26. Haag, J. & Borst, A. Spatial distribution and characteristics of voltage-gated calcium signals within visual interneurons. J. Neurophysiol. 83, 1039–1051 (2000).

    Article  CAS  Google Scholar 

  27. Weber, F., Eichner, H., Cuntz, H. & Borst, A. Eigenanalysis of a neural network for optic flow processing. New J. Phys. 10, 015013 (2008).

    Article  Google Scholar 

  28. Reisenman, C., Haag, J. & Borst, A. Adaptation of response transients in fly motion vision. I: Experiments. Vision Res. 43, 1293–1309 (2003).

    Article  Google Scholar 

  29. Single, S. & Borst, A. Dendritic integration and its role in computing image velocity. Science 281, 1848–1850 (1998).

    Article  CAS  Google Scholar 

  30. Borst, A., Egelhaaf, M. & Haag, J. Mechanisms of dendritic integration underlying gain control in fly motion-sensitive interneurons. J. Comput. Neurosci. 2, 5–18 (1995).

    Article  CAS  Google Scholar 

  31. van Hateren, J.H. & van der Schaaf, A . Independent component filters of natural images compared with simple cells in primary visual cortex. Proc. Biol. Sci. 265, 359–366 (1998).

    Article  CAS  Google Scholar 

  32. Reichardt, W. Evaluation of optical motion information by movement detectors. J. Comp. Physiol. [A] 161, 533–547 (1987).

    Article  CAS  Google Scholar 

  33. Borst, A., Reisenman, C. & Haag, J. Adaptation of response transients in fly motion vision. II: Model studies. Vision Res. 43, 1311–1324 (2003).

    Article  Google Scholar 

  34. Pierantoni, R. A look into the cock-pit of the fly. Cell Tissue Res. 171, 101–122 (1976).

    Article  CAS  Google Scholar 

  35. Egelhaaf, M. On the neuronal basis of figure-ground discrimination by relative motion in the visual system of the fly. II. Figure-detection cells, a new class of visual interneurones. Biol. Cybern. 52, 195–209 (1985).

    Article  Google Scholar 

  36. Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. I. The horizontal cells: Structure and signals. Biol. Cybern. 45, 143–156 (1982).

    Article  Google Scholar 

  37. Eckert, H. & Dvorak, D.R. The centrifugal horizontal cells in the lobula plate of the blowfly Phaenicia sericata. J. Insect Physiol. 29, 547–560 (1983).

    Article  Google Scholar 

  38. Hausen, K., Wolburg-Buchholz, K. & Ribi, W.A. The synaptic organization of visual interneurons in the lobula complex of flies. Cell Tissue Res. 208, 371–387 (1980).

    Article  CAS  Google Scholar 

  39. Wertz, A., Borst, A. & Haag, J. Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the fly. J. Neurosci. 28, 3131–3140 (2008).

    Article  CAS  Google Scholar 

  40. Llinas, R., Baker, R. & Sotelo, C. Electrotonic coupling between neurons in cat inferior olive. J. Neurophysiol. 37, 560–571 (1974).

    Article  CAS  Google Scholar 

  41. Lang, E.J., Sugihara, I. & Llinas, R. GABAergic modulation of complex spike activity by the cerebellar nucleoolivary pathway in rat. J. Neurophysiol. 76, 255–275 (1996).

    Article  CAS  Google Scholar 

  42. Spira, M.E. & Bennett, M.V. Synaptic control of electrotonic coupling between neurons. Brain Res. 37, 294–300 (1972).

    Article  CAS  Google Scholar 

  43. Kriebel, M.E., Bennett, M.V., Waxman, S.G. & Pappas, G.D. Oculomotor neurons in fish: electrotonic coupling and multiple sites of impulse initiation. Science 166, 520–524 (1969).

    Article  CAS  Google Scholar 

  44. Korn, H. & Bennett, M.V. Vestibular nystagmus and teleost oculomotor neurons: functions of electrotonic coupling and dendritic impulse initiation. J. Neurophysiol. 38, 430–451 (1975).

    Article  CAS  Google Scholar 

  45. Haag, J. & Borst, A. Amplification of high-frequency synaptic inputs by active dendritic membrane processes. Nature 379, 639–641 (1996).

    Article  CAS  Google Scholar 

  46. Hausen, K. Motion sensitive interneurons in the optomotor system of the fly. II. The horizontal cells: Receptive field organization and response characteristics. Biol. Cybern. 46, 67–79 (1982).

    Article  Google Scholar 

  47. Haag, J., Egelhaaf, M. & Borst, A. Dendritic integration of motion information in visual interneurons of the blowfly. Neurosci. Lett. 140, 173–176 (1992).

    Article  CAS  Google Scholar 

  48. Gabbiani, F., Krapp, H.G., Koch, C. & Laurent, G. Multiplicative computation in a visual neuron sensitive to looming. Nature 420, 320–324 (2002).

    Article  CAS  Google Scholar 

  49. Gabbiani, F., Krapp, H.G. & Laurent, G. Computation of object approach by wide-field, motion-sensitive neuron. J. Neurosci. 19, 1122–1141 (1998).

    Article  Google Scholar 

  50. Jazayeri, M. & Movshon, J.A. Optimal representation of sensory information by neural populations. Nat. Neurosci. 9, 690–696 (2006).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Y. Choe for useful comments on an early version of the manuscript, D. Spavieri Jr. for helpful discussions and R. Gleich for technical assistance. This study was supported by the Max Planck Society and by the Bernstein Center for Computational Neuroscience. Y.M.E. was partially supported by a Minerva Foundation fellowship from the Max Planck Society.

Author information

Authors and Affiliations

Authors

Contributions

Y.M.E., J.H. and A.B. collectively designed the experiments; Y.M.E. performed the experiments and simulations and evaluated the data; and Y.M.E., J.H. and A.B. collectively wrote the manuscript.

Corresponding author

Correspondence to Alexander Borst.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1 and Supplementary Methods (PDF 597 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Elyada, Y., Haag, J. & Borst, A. Different receptive fields in axons and dendrites underlie robust coding in motion-sensitive neurons. Nat Neurosci 12, 327–332 (2009). https://doi.org/10.1038/nn.2269

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2269

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing