Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Slow glycinergic transmission mediated by transmitter pooling

Abstract

Most fast-acting neurotransmitters are rapidly cleared from synaptic regions. This feature isolates synaptic sites, rendering the time course of synaptic responses independent of the number of active synapses. We found an exception at glycinergic synapses on granule cells of the rat dorsal cochlear nucleus. Here the duration of inhibitory postsynaptic currents (IPSCs) was dependent on the number of presynaptic axons that were stimulated and on the number of vesicles that were released from each axon. Increasing the stimulus number or frequency, or blocking glycine uptake, slowed synaptic decays, whereas a low-affinity competitive antagonist of glycine receptors (GlyRs) accelerated IPSC decay. These effects could be explained by unique features of GlyRs that are activated by pooling of glycine across synapses. Functionally, increasing the number of IPSPs markedly lengthened the period of spike inhibition following the cessation of presynaptic stimulation. Thus, temporal properties of inhibition can be controlled by activity levels in multiple presynaptic cells or by adjusting release probability at individual synapses.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Granule cells in the DCN and their glycinergic postsynaptic currents.
Figure 2: Asynchronous release.
Figure 3: Increasing release probability slows IPSC decay time.
Figure 4: Probing multivesicular release and receptor saturation using a weak antagonist of GlyRs, SR-95531.
Figure 5: SR-95531 accelerates the decay of IPSCs.
Figure 6: Simulation of IPSCs.
Figure 7: Contribution of IPSC decay time to the duration of inhibition.
Figure 8: Glycinergic nerve terminal density is consistent with spillover-mediated transmission.

Similar content being viewed by others

References

  1. Katz, B. & Miledi, R. The binding of acetylcholine to receptors and its removal from the synaptic cleft. J. Physiol. (Lond.) 231, 549–574 (1973).

    Article  CAS  Google Scholar 

  2. Barrett, E.F. & Stevens, C.F. The kinetics of transmitter release at the frog neuromuscular junction. J. Physiol. (Lond.) 227, 691–708 (1972).

    Article  CAS  Google Scholar 

  3. Barbour, B., Keller, B.U., Llano, I. & Marty, A. Prolonged presence of glutamate during excitatory synaptic transmission to cerebellar Purkinje cells. Neuron 12, 1331–1343 (1994).

    Article  CAS  Google Scholar 

  4. Jones, M.V. & Westbrook, G.L. Desensitized states prolong GABAA channel responses to brief agonist pulses. Neuron 15, 181–191 (1995).

    Article  CAS  Google Scholar 

  5. Legendre, P. A reluctant gating mode of glycine receptor channels determines the time course of inhibitory miniature synaptic events in zebrafish hindbrain neurons. J. Neurosci. 18, 2856–2870 (1998).

    Article  CAS  Google Scholar 

  6. Takahashi, T., Momiyama, A., Hirai, K., Hishinuma, F. & Akagi, H. Functional correlation of fetal and adult forms of glycine receptors with developmental changes in inhibitory synaptic receptor channels. Neuron 9, 1155–1161 (1992).

    Article  CAS  Google Scholar 

  7. Otis, T., Zhang, S. & Trussell, L.O. Direct measurement of AMPA receptor desensitization induced by glutamatergic synaptic transmission. J. Neurosci. 16, 7496–7504 (1996).

    Article  CAS  Google Scholar 

  8. Kinney, G.A., Overstreet, L.S. & Slater, N.T. Prolonged physiological entrapment of glutamate in the synaptic cleft of cerebellar unipolar brush cells. J. Neurophysiol. 78, 1320–1333 (1997).

    Article  CAS  Google Scholar 

  9. Otis, T.S., Wu, Y.C. & Trussell, L.O. Delayed clearance of transmitter and the role of glutamate transporters at synapses with multiple release sites. J. Neurosci. 16, 1634–1644 (1996).

    Article  CAS  Google Scholar 

  10. Silver, R.A., Cull-Candy, S.G. & Takahashi, T. Non-NMDA glutamate receptor occupancy and open probability at a rat cerebellar synapse with single and multiple release sites. J. Physiol. (Lond.) 494, 231–250 (1996).

    Article  CAS  Google Scholar 

  11. Kondo, S. & Marty, A. Synaptic currents at individual connections among stellate cells in rat cerebellar slices. J. Physiol. (Lond.) 509, 221–232 (1998).

    Article  CAS  Google Scholar 

  12. Biro, A.A., Holderith, N.B. & Nusser, Z. Release probability–dependent scaling of the postsynaptic responses at single hippocampal GABAergic synapses. J. Neurosci. 26, 12487–12496 (2006).

    Article  CAS  Google Scholar 

  13. Cathala, L., Holderith, N.B., Nusser, Z., DiGregorio, D.A. & Cull-Candy, S.G. Changes in synaptic structure underlie the developmental speeding of AMPA receptor–mediated EPSCs. Nat. Neurosci. 8, 1310–1318 (2005).

    Article  CAS  Google Scholar 

  14. Isaacson, J.S., Solis, J.M. & Nicoll, R.A. Local and diffuse synaptic actions of GABA in the hippocampus. Neuron 10, 165–175 (1993).

    Article  CAS  Google Scholar 

  15. Banks, M.I., Li, T.B. & Pearce, R.A. The synaptic basis of GABAA,slow. J. Neurosci. 18, 1305–1317 (1998).

    Article  CAS  Google Scholar 

  16. Lu, T. & Trussell, L.O. Inhibitory transmission mediated by asynchronous transmitter release. Neuron 26, 683–694 (2000).

    Article  CAS  Google Scholar 

  17. Legendre, P. The glycinergic inhibitory synapse. Cell. Mol. Life Sci. 58, 760–793 (2001).

    Article  CAS  Google Scholar 

  18. Burzomato, V., Beato, M., Groot-Kormelink, P.J., Colquhoun, D. & Sivilotti, L.G. Single-channel behavior of heteromeric alpha1beta glycine receptors: an attempt to detect a conformational change before the channel opens. J. Neurosci. 24, 10924–10940 (2004).

    Article  CAS  Google Scholar 

  19. Lu, T., Rubio, M.E. & Trussell, L.O. Glycinergic transmission shaped by the co-release of GABA in a mammalian auditory synapse. Neuron 57, 524–535 (2008).

    Article  CAS  Google Scholar 

  20. Beato, M. The time course of transmitter at glycinergic synapses onto motoneurons. J. Neurosci. 28, 7412–7425 (2008).

    Article  CAS  Google Scholar 

  21. Brand, A., Behrend, O., Marquardt, T., McAlpine, D. & Grothe, B. Precise inhibition is essential for microsecond interaural time difference coding. Nature 417, 543–547 (2002).

    Article  CAS  Google Scholar 

  22. Singer, J.H. & Berger, A.J. Contribution of single-channel properties to the time course and amplitude variance of quantal glycine currents recorded in rat motoneurons. J. Neurophysiol. 81, 1608–1616 (1999).

    Article  CAS  Google Scholar 

  23. Harty, T.P. & Manis, P.B. Kinetic analysis of glycine receptor currents in ventral cochlear nucleus. J. Neurophysiol. 79, 1891–1901 (1998).

    Article  CAS  Google Scholar 

  24. Mager, S. et al. Steady states, charge movements and rates for a cloned GABA transporter expressed in Xenopus oocytes. Neuron 10, 177–188 (1993).

    Article  CAS  Google Scholar 

  25. Wadiche, J.I., Arriza, J.L., Amara, S.G. & Kavanaugh, M.P. Kinetics of a human glutamate transporter. Neuron 14, 1019–1027 (1995).

    Article  CAS  Google Scholar 

  26. Oertel, D. & Young, E.D. What's a cerebellar circuit doing in the auditory system? Trends Neurosci. 27, 104–110 (2004).

    Article  CAS  Google Scholar 

  27. Balakrishnan, V. & Trussell, L.O. Synaptic inputs to granule cells of the dorsal cochlear nucleus. J. Neurophysiol. 99, 208–219 (2008).

    Article  Google Scholar 

  28. Awatramani, G.B., Turecek, R. & Trussell, L.O. Inhibitory control at a synaptic relay. J. Neurosci. 24, 2643–2647 (2004).

    Article  CAS  Google Scholar 

  29. Magnusson, A.K., Kapfer, C., Grothe, B. & Koch, U. Maturation of glycinergic inhibition in the gerbil medial superior olive after hearing onset. J. Physiol. (Lond.) 568, 497–512 (2005).

    Article  CAS  Google Scholar 

  30. Silver, R.A., Traynelis, S.F. & Cull-Candy, S.G. Rapid time course miniature and evoked excitatory currents at cerebellar synapses in situ. Nature 355, 163–166 (1992).

    Article  CAS  Google Scholar 

  31. Pitt, S.J., Sivilotti, L.G. & Beato, M. High intracellular chloride slows the decay of glycinergic currents. J. Neurosci. 28, 11454–11467 (2008).

    Article  CAS  Google Scholar 

  32. Christie, J.M. & Jahr, C.E. Multivesicular release at Schaffer collateral-CA1 hippocampal synapses. J. Neurosci. 26, 210–216 (2006).

    Article  CAS  Google Scholar 

  33. Tong, G. & Jahr, C.E. Block of glutamate transporters potentiates postsynaptic excitation. Neuron 13, 1195–1203 (1994).

    Article  CAS  Google Scholar 

  34. Atkinson, B.N. et al. ALX 5407: a potent, selective inhibitor of the hGlyT1 glycine transporter. Mol. Pharmacol. 60, 1414–1420 (2001).

    Article  CAS  Google Scholar 

  35. Whitehead, K.J. et al. Positive N-methyl-D-aspartate receptor modulation by selective glycine transporter-1 inhibition in the rat dorsal spinal cord in vivo. Neuroscience 126, 381–390 (2004).

    Article  CAS  Google Scholar 

  36. Beato, M., Burzomato, V. & Sivilotti, L.G. The kinetics of inhibition of rat recombinant heteromeric alpha1beta glycine receptors by the low-affinity antagonist SR-95531. J. Physiol. (Lond.) 580, 171–179 (2007).

    Article  CAS  Google Scholar 

  37. Wang, P. & Slaughter, M.M. Effects of GABA receptor antagonists on retinal glycine receptors and on homomeric glycine receptor alpha subunits. J. Neurophysiol. 93, 3120–3126 (2005).

    Article  CAS  Google Scholar 

  38. Fucile, S., de Saint Jan, D., David-Watine, B., Korn, H. & Bregestovski, P. Comparison of glycine and GABA actions on the zebrafish homomeric glycine receptor. J. Physiol. (Lond.) 517, 369–383 (1999).

    Article  CAS  Google Scholar 

  39. Gentet, L.J. & Clements, J.D. Binding site stoichiometry and the effects of phosphorylation on human alpha1 homomeric glycine receptors. J. Physiol. (Lond.) 544, 97–106 (2002).

    Article  CAS  Google Scholar 

  40. Mohammadi, B. et al. Kinetic analysis of recombinant mammalian alpha(1) and alpha(1)beta glycine receptor channels. Eur. Biophys. J. 32, 529–536 (2003).

    Article  CAS  Google Scholar 

  41. Twyman, R.E. & Macdonald, R.L. Kinetic properties of the glycine receptor main- and sub-conductance states of mouse spinal cord neurones in culture. J. Physiol. (Lond.) 435, 303–331 (1991).

    Article  CAS  Google Scholar 

  42. Barbour, B. & Hausser, M. Intersynaptic diffusion of neurotransmitter. Trends Neurosci. 20, 377–384 (1997).

    Article  CAS  Google Scholar 

  43. Carter, A.G. & Regehr, W.G. Prolonged synaptic currents and glutamate spillover at the parallel fiber to stellate cell synapse. J. Neurosci. 20, 4423–4434 (2000).

    Article  CAS  Google Scholar 

  44. Alibardi, L. Ultrastructural distribution of glycinergic and GABAergic neurons and axon terminals in the rat dorsal cochlear nucleus, with emphasis on granule cell areas. J. Anat. 203, 31–56 (2003).

    Article  Google Scholar 

  45. Wadiche, J.I. & Jahr, C.E. Multivesicular release at climbing fiber–Purkinje cell synapses. Neuron 32, 301–313 (2001).

    Article  CAS  Google Scholar 

  46. Dumoulin, A., Triller, A. & Dieudonne, S. IPSC kinetics at identified GABAergic and mixed GABAergic and glycinergic synapses onto cerebellar Golgi cells. J. Neurosci. 21, 6045–6057 (2001).

    Article  CAS  Google Scholar 

  47. Kraushaar, U. & Backus, K.H. Characterization of GABA(A) and glycine receptors in neurons of the developing rat inferior colliculus. Pflugers Arch. 445, 279–288 (2002).

    Article  CAS  Google Scholar 

  48. Veruki, M.L., Gill, S.B. & Hartveit, E. Spontaneous IPSCs and glycine receptors with slow kinetics in wide-field amacrine cells in the mature rat retina. J. Physiol. (Lond.) 581, 203–219 (2007).

    Article  CAS  Google Scholar 

  49. Piechotta, K., Weth, F., Harvey, R.J. & Friauf, E. Localization of rat glycine receptor alpha1 and alpha2 subunit transcripts in the developing auditory brainstem. J. Comp. Neurol. 438, 336–352 (2001).

    Article  CAS  Google Scholar 

  50. Awatramani, G.B., Turecek, R. & Trussell, L.O. Staggered development of GABAergic and glycinergic transmission in the MNTB. J. Neurophysiol. 93, 819–828 (2005).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank H. Huang, C.E. Jahr and M.E. Roberts for comments on the manuscript and H. Sundaram for the gift of ORG-25543. This work was supported by US National Institutes of Health grant NS028901.

Author information

Authors and Affiliations

Authors

Contributions

V.B. conducted the electrophysiological experiments, analysis and manuscript preparation. S.P.K. performed immunohistochemistry and analysis. P.D.R. conducted diffusion modeling. L.O.T. conducted kinetic modeling, data analysis and wrote the manuscript.

Corresponding author

Correspondence to Laurence O Trussell.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Methods and Supplementary Results (PDF 4495 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Balakrishnan, V., Kuo, S., Roberts, P. et al. Slow glycinergic transmission mediated by transmitter pooling. Nat Neurosci 12, 286–294 (2009). https://doi.org/10.1038/nn.2265

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2265

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing