Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration

Abstract

Genetically encoded optical neuromodulators create an opportunity for circuit-specific intervention in neurological diseases. One of the diseases most amenable to this approach is retinal degeneration, where the loss of photoreceptors leads to complete blindness. To restore photosensitivity, we genetically targeted a light-activated cation channel, channelrhodopsin-2, to second-order neurons, ON bipolar cells, of degenerated retinas in vivo in the Pde6brd1 (also known as rd1) mouse model. In the absence of 'classical' photoreceptors, we found that ON bipolar cells that were engineered to be photosensitive induced light-evoked spiking activity in ganglion cells. The rescue of light sensitivity was selective to the ON circuits that would naturally respond to increases in brightness. Despite degeneration of the outer retina, our intervention restored transient responses and center-surround organization of ganglion cells. The resulting signals were relayed to the visual cortex and were sufficient for the animals to successfully perform optomotor behavioral tasks.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Schematic diagram illustrating photoreception driving retinal activity in wild-type retinas versus retinal degeneration retinas expressing ChR2 in ON bipolar cells.
Figure 2: ChR2 expression is selectively targeted to ON bipolar cells in wild-type and rd1 mouse retinas.
Figure 3: Selective expression of ChR2 in ON bipolar cells restores light responsiveness in rd1 retinas lacking photoreceptors.
Figure 4: Spatial and temporal properties of ganglion cells in e-rd1 retinas.
Figure 5: Excitatory and inhibitory input to retinal ganglion cells in e-rd1 retinas.
Figure 6: Visual-evoked potentials are detected in the visual cortex of e-rd1 mice.
Figure 7: Light induces changes in locomotor activity.
Figure 8: Visual spatial acuity of rescued e-rd1 mice.

References

  1. Acland, G.M. et al. Gene therapy restores vision in a canine model of childhood blindness. Nat. Genet. 28, 92–95 (2001).

    CAS  PubMed  Google Scholar 

  2. MacLaren, R.E. et al. Retinal repair by transplantation of photoreceptor precursors. Nature 444, 203–207 (2006).

    Article  CAS  Google Scholar 

  3. Weiland, J.D., Liu, W. & Humayun, M.S. Retinal prosthesis. Annu. Rev. Biomed. Eng. 7, 361–401 (2005).

    Article  CAS  Google Scholar 

  4. Bi, A. et al. Ectopic expression of a microbial-type rhodopsin restores visual responses in mice with photoreceptor degeneration. Neuron 50, 23–33 (2006).

    Article  CAS  Google Scholar 

  5. Belgum, J.H., Dvorak, D.R., McReynolds, J.S. & Miyachi, E. Push-pull effect of surround illumination on excitatory and inhibitory inputs to mudpuppy retinal ganglion cells. J. Physiol. (Lond.) 388, 233–243 (1987).

    Article  CAS  Google Scholar 

  6. Hubel, D.H. & Wiesel, T.N. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. (Lond.) 160, 106–154 (1962).

    Article  CAS  Google Scholar 

  7. Masu, M. et al. Specific deficit of the ON response in visual transmission by targeted disruption of the mGluR6 gene. Cell 80, 757–765 (1995).

    Article  CAS  Google Scholar 

  8. Nagel, G. et al. Channelrhodopsin-2, a directly light-gated cation-selective membrane channel. Proc. Natl. Acad. Sci. USA 100, 13940–13945 (2003).

    Article  CAS  Google Scholar 

  9. Boyden, E.S., Zhang, F., Bamberg, E., Nagel, G. & Deisseroth, K. Millisecond-timescale, genetically targeted optical control of neural activity. Nat. Neurosci. 8, 1263–1268 (2005).

    Article  CAS  Google Scholar 

  10. Farber, D.B., Flannery, J.G. & Bowes-Rickman, C. The rd mouse story: seventy years of research on an animal model of inherited retinal degeneration. Prog. Retin. Eye Res. 13, 31–64 (1994).

    Article  CAS  Google Scholar 

  11. Matsuda, T. & Cepko, C.L. Electroporation and RNA interference in the rodent retina in vivo and in vitro. Proc. Natl. Acad. Sci. USA 101, 16–22 (2004).

    Article  CAS  Google Scholar 

  12. Wassle, H. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5, 747–757 (2004).

    Article  Google Scholar 

  13. Jeon, C.J., Strettoi, E. & Masland, R.H. The major cell populations of the mouse retina. J. Neurosci. 18, 8936–8946 (1998).

    Article  CAS  Google Scholar 

  14. Meister, M., Lagnado, L. & Baylor, D.A. Concerted signaling by retinal ganglion cells. Science 270, 1207–1210 (1995).

    Article  CAS  Google Scholar 

  15. Slaughter, M.M. & Miller, R.F. 2-amino-4-phosphonobutyric acid: a new pharmacological tool for retina research. Science 211, 182–185 (1981).

    Article  CAS  Google Scholar 

  16. Berson, D.M., Dunn, F.A. & Takao, M. Phototransduction by retinal ganglion cells that set the circadian clock. Science 295, 1070–1073 (2002).

    Article  CAS  Google Scholar 

  17. Kuffler, S.W. Discharge patterns and functional organization of mammalian retina. J. Neurophysiol. 16, 37–68 (1953).

    Article  CAS  Google Scholar 

  18. Renteria, R.C. et al. Intrinsic ON responses of the retinal OFF pathway are suppressed by the ON pathway. J. Neurosci. 26, 11857–11869 (2006).

    Article  CAS  Google Scholar 

  19. Roska, B. & Werblin, F. Vertical interactions across ten parallel, stacked representations in the mammalian retina. Nature 410, 583–587 (2001).

    Article  CAS  Google Scholar 

  20. Porciatti, V., Pizzorusso, T. & Maffei, L. The visual physiology of the wild type mouse determined with pattern VEPs. Vision Res. 39, 3071–3081 (1999).

    Article  CAS  Google Scholar 

  21. Bourin, M. & Hascoet, M. The mouse light/dark box test. Eur. J. Pharmacol. 463, 55–65 (2003).

    Article  CAS  Google Scholar 

  22. Collins, R.D., Tourtellot, M.K. & Bell, W.J. Defining stops in search pathways. J. Neurosci. Methods 60, 95–98 (1995).

    Article  CAS  Google Scholar 

  23. Abdeljalil, J. et al. The optomotor response: a robust first-line visual screening method for mice. Vision Res. 45, 1439–1446 (2005).

    Article  Google Scholar 

  24. Strettoi, E., Porciatti, V., Falsini, B., Pignatelli, V. & Rossi, C. Morphological and functional abnormalities in the inner retina of the rd/rd mouse. J. Neurosci. 22, 5492–5504 (2002).

    Article  CAS  Google Scholar 

  25. Strettoi, E., Pignatelli, V., Rossi, C., Porciatti, V. & Falsini, B. Remodeling of second-order neurons in the retina of rd/rd mutant mice. Vision Res. 43, 867–877 (2003).

    Article  Google Scholar 

  26. Strettoi, E. & Pignatelli, V. Modifications of retinal neurons in a mouse model of retinitis pigmentosa. Proc. Natl. Acad. Sci. USA 97, 11020–11025 (2000).

    Article  CAS  Google Scholar 

  27. Marc, R.E. et al. Neural reprogramming in retinal degeneration. Invest. Ophthalmol. Vis. Sci. 48, 3364–3371 (2007).

    Article  Google Scholar 

  28. Jones, B.W. et al. Retinal remodeling triggered by photoreceptor degenerations. J. Comp. Neurol. 464, 1–16 (2003).

    Article  Google Scholar 

  29. Bloomfield, S.A. & Dacheux, R.F. Rod vision: pathways and processing in the mammalian retina. Prog. Retin. Eye Res. 20, 351–384 (2001).

    Article  CAS  Google Scholar 

  30. Gargini, C., Terzibasi, E., Mazzoni, F. & Strettoi, E. Retinal organization in the retinal degeneration 10 (rd10) mutant mouse: a morphological and ERG study. J. Comp. Neurol. 500, 222–238 (2007).

    Article  Google Scholar 

  31. Euler, T. & Masland, R.H. Light-evoked responses of bipolar cells in a mammalian retina. J. Neurophysiol. 83, 1817–1829 (2000).

    Article  CAS  Google Scholar 

  32. Awatramani, G.B. & Slaughter, M.M. Origin of transient and sustained responses in ganglion cells of the retina. J. Neurosci. 20, 7087–7095 (2000).

    Article  CAS  Google Scholar 

  33. Pang, J.J., Gao, F. & Wu, S.M. Stratum-by-stratum projection of light response attributes by retinal bipolar cells of Ambystoma. J. Physiol. (Lond.) 558, 249–262 (2004).

    Article  CAS  Google Scholar 

  34. DeVries, S.H. Bipolar cells use kainate and AMPA receptors to filter visual information into separate channels. Neuron 28, 847–856 (2000).

    Article  CAS  Google Scholar 

  35. Mao, B.Q., MacLeish, P.R. & Victor, J.D. The intrinsic dynamics of retinal bipolar cells isolated from tiger salamander. Vis. Neurosci. 15, 425–438 (1998).

    Article  CAS  Google Scholar 

  36. Ma, Y.P., Cui, J. & Pan, Z.H. Heterogeneous expression of voltage-dependent Na+ and K+ channels in mammalian retinal bipolar cells. Vis. Neurosci. 22, 119–133 (2005).

    Article  Google Scholar 

  37. Taylor, W.R. TTX attenuates surround inhibition in rabbit retinal ganglion cells. Vis. Neurosci. 16, 285–290 (1999).

    Article  CAS  Google Scholar 

  38. Cook, P.B. & McReynolds, J.S. Lateral inhibition in the inner retina is important for spatial tuning of ganglion cells. Nat. Neurosci. 1, 714–719 (1998).

    Article  CAS  Google Scholar 

  39. Shields, C.R. & Lukasiewicz, P.D. Spike-dependent GABA inputs to bipolar cell axon terminals contribute to lateral inhibition of retinal ganglion cells. J. Neurophysiol. 89, 2449–2458 (2003).

    Article  CAS  Google Scholar 

  40. Dedek, K. et al. Ganglion cell adaptability: does the coupling of horizontal cells play a role? PLoS ONE 3, e1714 (2008).

    Article  Google Scholar 

  41. Gianfranceschi, L., Fiorentini, A. & Maffei, L. Behavioural visual acuity of wild-type and bcl2 transgenic mouse. Vision Res. 39, 569–574 (1999).

    Article  CAS  Google Scholar 

  42. Wong, A.A. & Brown, R.E. Visual detection, pattern discrimination and visual acuity in 14 strains of mice. Genes Brain Behav. 5, 389–403 (2006).

    Article  CAS  Google Scholar 

  43. Prusky, G.T., Alam, N.M., Beekman, S. & Douglas, R.M. Rapid quantification of adult and developing mouse spatial vision using a virtual optomotor system. Invest. Ophthalmol. Vis. Sci. 45, 4611–4616 (2004).

    Article  Google Scholar 

  44. Umino, Y., Solessio, E. & Barlow, R.B. Speed, spatial, and temporal tuning of rod and cone vision in mouse. J. Neurosci. 28, 189–198 (2008).

    Article  CAS  Google Scholar 

  45. Singer, J.H., Lassova, L., Vardi, N. & Diamond, J.S. Coordinated multivesicular release at a mammalian ribbon synapse. Nat. Neurosci. 7, 826–833 (2004).

    Article  CAS  Google Scholar 

  46. Matsui, K., Hosoi, N. & Tachibana, M. Excitatory synaptic transmission in the inner retina: paired recordings of bipolar cells and neurons of the ganglion cell layer. J. Neurosci. 18, 4500–4510 (1998).

    Article  CAS  Google Scholar 

  47. Banghart, M., Borges, K., Isacoff, E., Trauner, D. & Kramer, R.H. Light-activated ion channels for remote control of neuronal firing. Nat. Neurosci. 7, 1381–1386 (2004).

    Article  CAS  Google Scholar 

  48. Zrenner, E. Will retinal implants restore vision? Science 295, 1022–1025 (2002).

    Article  CAS  Google Scholar 

  49. Han, X. & Boyden, E.S. Multiple-color optical activation, silencing and desynchronization of neural activity, with single-spike temporal resolution. PLoS ONE 2, e299 (2007).

    Article  Google Scholar 

  50. Zhang, F. et al. Multimodal fast optical interrogation of neural circuitry. Nature 446, 633–639 (2007).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank B.G. Scherf, S. Djaffer, Y. Shimada and F. Ronay for technical assistance, K. Deisseroth for kindly providing us with the pLECYT lentiviral vector, and A. Lüthi, S. Picaud, M. Fendt, M. Stadler and C. Herry for their suggestions or help with the behavioral experiments. This study was supported by Friedrich Miescher Institute funds, an US Office of Naval Research Naval International Cooperative Opportunities in Science and Technology Program grant, a Marie Curie Excellence Grant, a Human Frontier Science Program Young Investigator grant (B.R.), a Marie Curie Postdoctoral Fellowship (D.B. and T.A.M.), a National Center for Competence in Research in Genetics fellowship (V.B.) and a Human Frontier Science Program Fellowship (G.B.A.)

Author information

Authors and Affiliations

Authors

Contributions

The Grm6 enhancer was developed by D.S.K. and C.L.C. The molecular biology, electroporations, immunohistochemistry and confocal microscopy experiments were carried out by P.S.L. V.B. performed electroporations. Multi-electrode array recordings and analyses, cortical recordings, behavioral experiments and software development were carried out by D.B. Patch-clamp experiments and two-photon microscopy were performed by G.B.A. and T.A.M. Experiments were designed by B.R., P.S.L., D.B. and G.B.A.

Corresponding author

Correspondence to Botond Roska.

Ethics declarations

Competing interests

Pamela S Lagali, David Balya, Thomas A Münch and Botond Roska have applied for a patent on the use of light-sensitive genes (WO 2008/022772).

Constance L Cepko, Douglas S Kim and Harvard University are submitting a patent application for the use of the Grm6 regulatory elements described in this publication.

Supplementary information

Supplementary Text and Figures

Supplementary Figure 1 and Methods (PDF 253 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lagali, P., Balya, D., Awatramani, G. et al. Light-activated channels targeted to ON bipolar cells restore visual function in retinal degeneration. Nat Neurosci 11, 667–675 (2008). https://doi.org/10.1038/nn.2117

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nn.2117

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing