Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation


Retinoic acid-inducible gene I (RIG-I) receptor recognizes 5′-triphosphorylated RNA and triggers a signalling cascade that results in the induction of type-I interferon (IFN)-dependent responses. Its precise regulation represents a pivotal balance between antiviral defences and autoimmunity. To elucidate the cellular cofactors that regulate RIG-I signalling, we performed two global RNA interference analyses to identify both positive and negative regulatory nodes operating on the signalling pathway during virus infection. These factors were integrated with experimentally and computationally derived interactome data to build a RIG-I protein interaction network. Our analysis revealed diverse cellular processes, including the unfolded protein response, Wnt signalling and RNA metabolism, as critical cellular components governing innate responses to non-self RNA species. Importantly, we identified K-Homology Splicing Regulatory Protein (KHSRP) as a negative regulator of this pathway. We find that KHSRP associates with the regulatory domain of RIG-I to maintain the receptor in an inactive state and attenuate its sensing of viral RNA (vRNA). Consistent with increased RIG-I antiviral signalling in the absence of KHSRP, viral replication is reduced when KHSRP expression is knocked down both in vitro and in vivo. Taken together, these data indicate that KHSRP functions as a checkpoint regulator of the innate immune response to pathogen challenge.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Genome-wide RNAi screens to identify regulators of the RIG-I signalling pathway.
Figure 2: Confirmation studies of the putative negative regulators on the RIG-I pathway.
Figure 3: KHSRP negatively regulates RIG-I signalling.
Figure 4: KHSRP associates with the regulatory domain of RIG-I.
Figure 5: KHSRP maintains RIG-I in an inactive state and attenuates its sensing of vRNA.
Figure 6: KHSRP inhibits replication of RNA viruses.


  1. 1

    Tisoncik, J. R. et al. Into the eye of the cytokine storm. Microbiol. Mol. Biol. Rev. 76, 16–32 (2012).

    CAS  Article  Google Scholar 

  2. 2

    Pichlmair, A. et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 314, 997–1001 (2006).

    CAS  Article  Google Scholar 

  3. 3

    Yoneyama, M. et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat. Immunol. 5, 730–737 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Takahasi, K. et al. Nonself RNA-sensing mechanism of RIG-I helicase and activation of antiviral immune responses. Mol. Cell 29, 428–440 (2008).

    CAS  Article  Google Scholar 

  5. 5

    Kato, H. et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 441, 101–105 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Saito, T., Owen, D. M., Jiang, F., Marcotrigiano, J. & Gale, M. Jr. Innate immunity induced by composition-dependent RIG-I recognition of hepatitis C virus RNA. Nature 454, 523–527 (2008).

    CAS  Article  Google Scholar 

  7. 7

    Strahle, L., Garcin, D. & Kolakofsky, D. Sendai virus defective-interfering genomes and the activation of interferon-beta. Virology 351, 101–111 (2006).

    CAS  Article  Google Scholar 

  8. 8

    Meylan, E. et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 437, 1167–1172 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Loo, Y.-M. & Gale, M. Jr Immune signaling by RIG-I-like receptors. Immunity 34, 680–692 (2011).

    CAS  Article  Google Scholar 

  10. 10

    Gack, M. U. et al. TRIM25 RING-finger E3 ubiquitin ligase is essential for RIG-I-mediated antiviral activity. Nature 446, 916–920 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Zhong, B. et al. The E3 ubiquitin ligase RNF5 targets virus-induced signaling adaptor for ubiquitination and degradation. J. Immunol. 184, 6249–6255 (2010).

    CAS  Article  Google Scholar 

  12. 12

    Lei, Y. et al. The mitochondrial proteins NLRX1 and TUFM form a complex that regulates type I interferon and autophagy. Immunity 36, 933–946 (2012).

    CAS  Article  Google Scholar 

  13. 13

    Saitoh, T. et al. Negative regulation of interferon-regulatory factor 3-dependent innate antiviral response by the prolyl isomerase Pin1. Nat. Immunol. 7, 598–605 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Rothenfusser, S. et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J. Immunol. 175, 5260–5268 (2005).

    CAS  Article  Google Scholar 

  15. 15

    Choi, S. J. et al. HDAC6 regulates cellular viral RNA sensing by deacetylation of RIG-I. EMBO J. 35, 429–442 (2016).

    CAS  Article  Google Scholar 

  16. 16

    Crow, Y. J. Type I interferonopathies: Mendelian type I interferon up-regulation. Curr. Opin. Immunol. 32, 7–12 (2015).

    CAS  Article  Google Scholar 

  17. 17

    Crow, Y. J. Type I interferonopathies: a novel set of inborn errors of immunity. Ann. NY Acad. Sci. 1238, 91–98 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Mibayashi, M. et al. Inhibition of retinoic acid-inducible gene I-mediated induction of beta interferon by the NS1 protein of influenza A virus. J. Virol. 81, 514–524 (2007).

    CAS  Article  Google Scholar 

  19. 19

    Gack, M. U. et al. Influenza A virus NS1 targets the ubiquitin ligase TRIM25 to evade recognition by the host viral RNA sensor RIG-I. Cell Host Microbe 5, 439–449 (2009).

    CAS  Article  Google Scholar 

  20. 20

    Friedman, C. S. et al. The tumour suppressor CYLD is a negative regulator of RIG-I-mediated antiviral response. EMBO Rep. 9, 930–936 (2008).

    CAS  Article  Google Scholar 

  21. 21

    Konig, R. et al. A probability-based approach for the analysis of large-scale RNAi screens. Nat. Methods 4, 847–849 (2007).

    Article  Google Scholar 

  22. 22

    Soulat, D. et al. The DEAD-box helicase DDX3X is a critical component of the TANK-binding kinase 1-dependent innate immune response. EMBO J. 27, 2135–2146 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Okabe, Y., Sano, T. & Nagata, S. Regulation of the innate immune response by threonine-phosphatase of eyes absent. Nature 460, 520–524 (2009).

    CAS  Article  Google Scholar 

  24. 24

    You, F. et al. PCBP2 mediates degradation of the adaptor MAVS via the HECT ubiquitin ligase AIP4. Nat. Immunol. 10, 1300–1308 (2009).

    CAS  Article  Google Scholar 

  25. 25

    Jia, Y. et al. Negative regulation of MAVS-mediated innate immune response by PSMA7. J. Immunol. 183, 4241–4248 (2009).

    CAS  Article  Google Scholar 

  26. 26

    Konig, R. et al. Human host factors required for influenza virus replication. Nature 463, 813–817 (2010).

    Article  Google Scholar 

  27. 27

    Kondo, T., Kawai, T. & Akira, S. Dissecting negative regulation of toll-like receptor signaling. Trends Immunol. 33, 449–458 (2012).

    CAS  Article  Google Scholar 

  28. 28

    Yasukawa, H., Sasaki, A. & Yoshimura, A. Negative regulation of cytokine signaling pathways. Annu. Rev. Immunol. 18, 143–164 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Komuro, A., Bamming, D. & Horvath, C. M. Negative regulation of cytoplasmic RNA-mediated antiviral signaling. Cytokine 43, 350–358 (2008).

    CAS  Article  Google Scholar 

  30. 30

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  Article  Google Scholar 

  31. 31

    Seth, R. B., Sun, L. & Chen, Z. J. Antiviral innate immunity pathways. Cell Res. 16, 141–147 (2006).

    CAS  Article  Google Scholar 

  32. 32

    Wang, Y. Y., Li, L., Han, K. J., Zhai, Z. & Shu, H. B. A20 is a potent inhibitor of TLR3- and Sendai virus-induced activation of NF-κB and ISRE and IFN-β promoter. FEBS Lett. 576, 86–90 (2004).

    CAS  Article  Google Scholar 

  33. 33

    Lin, R. et al. Negative regulation of the retinoic acid-inducible gene I-induced antiviral state by the ubiquitin-editing protein A20. J. Biol. Chem. 281, 2095–2103 (2006).

    CAS  Article  Google Scholar 

  34. 34

    King, P. H. & Chen, C. Y. Role of KSRP in control of type I interferon and cytokine expression. J. Interferon Cytokine Res. 34, 267–274 (2014).

    CAS  Article  Google Scholar 

  35. 35

    Lin, W. J. et al. Posttranscriptional control of type I interferon genes by KSRP in the innate immune response against viral infection. Mol. Cell Biol. 31, 3196–3207 (2011).

    CAS  Article  Google Scholar 

  36. 36

    Patel, J. R. et al. ATPase-driven oligomerization of RIG-I on RNA allows optimal activation of type-I interferon. EMBO Rep. 14, 780–787 (2013).

    CAS  Article  Google Scholar 

  37. 37

    Gardner, B. M. & Walter, P. Unfolded proteins are Ire1-activating ligands that directly induce the unfolded protein response. Science 333, 1891–1894 (2011).

    CAS  Article  Google Scholar 

  38. 38

    Wies, E. et al. Dephosphorylation of the RNA sensors RIG-I and MDA5 by the phosphatase PP1 is essential for innate immune signaling. Immunity 38, 437–449 (2013).

    CAS  Article  Google Scholar 

  39. 39

    Tripathi, S. et al. Meta- and orthogonal integration of influenza ‘OMICs’ data defines a role for UBR4 in virus budding. Cell Host Microbe 18, 723–735 (2015).

    CAS  Article  Google Scholar 

  40. 40

    Pickup, J. C. Inflammation and activated innate immunity in the pathogenesis of type 2 diabetes. Diabetes Care 27, 813–823 (2004).

    Article  Google Scholar 

  41. 41

    Allam, R. & Anders, H.-J. The role of innate immunity in autoimmune tissue injury. Curr. Opin. Rheumatol. 20, 538–544 (2008).

    CAS  Article  Google Scholar 

  42. 42

    Tardif, K. D., Mori, K. & Siddiqui, A. Hepatitis C virus subgenomic replicons induce endoplasmic reticulum stress activating an intracellular signaling pathway. J. Virol. 76, 7453–7459 (2002).

    CAS  Article  Google Scholar 

  43. 43

    Hampton, R. Y. ER stress response: getting the UPR hand on misfolded proteins. Curr. Biol. 10, R518–R521 (2000).

    CAS  Article  Google Scholar 

  44. 44

    Urano, F. et al. Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science 287, 664–666 (2000).

    CAS  Article  Google Scholar 

  45. 45

    Cho, J. A. et al. The unfolded protein response element IRE1α senses bacterial proteins invading the ER to activate RIG-I and innate immune signaling. Cell Host Microbe 13, 558–569 (2013).

    CAS  Article  Google Scholar 

  46. 46

    Eckard, S. C. et al. The SKIV2L RNA exosome limits activation of the RIG-I-like receptors. Nat. Immunol. 15, 839–845 (2014).

    CAS  Article  Google Scholar 

  47. 47

    Demand, J., Alberti, S., Patterson, C. & Höhfeld, J. Cooperation of a ubiquitin domain protein and an E3 ubiquitin ligase during chaperone/proteasome coupling. Curr. Biol. 11, 1569–1577 (2001).

    CAS  Article  Google Scholar 

  48. 48

    Reina, C. P., Nabet, B. Y., Young, P. D. & Pittman, R. N. Basal and stress-induced Hsp70 are modulated by ataxin-3. Cell Stress Chaperon. 17, 729–742 (2012).

    CAS  Article  Google Scholar 

  49. 49

    Cabral Miranda, F. et al. CHIP, a carboxy terminus HSP-70 interacting protein, prevents cell death induced by endoplasmic reticulum stress in the central nervous system. Front. Cell. Neurosci. 8, 438 (2015).

    Article  Google Scholar 

  50. 50

    Cui, S. et al. The C-terminal regulatory domain is the RNA 5′-triphosphate sensor of RIG-I. Mol. Cell 29, 169–179 (2008).

    CAS  Article  Google Scholar 

  51. 51

    Baum, A., Sachidanandam, R. & García-Sastre, A. Preference of RIG-I for short viral RNA molecules in infected cells revealed by next-generation sequencing. Proc. Natl Acad. Sci. USA 107, 16303–16308 (2010).

    CAS  Article  Google Scholar 

  52. 52

    Alamares-Sapuay, J. G. et al. Serum- and glucocorticoid-regulated kinase 1 is required for nuclear export of the ribonucleoprotein of influenza A virus. J. Virol. 87, 6020–6026 (2013).

    CAS  Article  Google Scholar 

  53. 53

    Ran, F. A. et al. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 8, 2281–2308 (2013).

    CAS  Article  Google Scholar 

  54. 54

    Goujon, C. et al. Human MX2 is an interferon-induced post-entry inhibitor of HIV-1 infection. Nature 502, 559–562 (2013).

    CAS  Article  Google Scholar 

  55. 55

    Jager, S. et al. Global landscape of HIV–human protein complexes. Nature 481, 365–370 (2012).

    Article  Google Scholar 

  56. 56

    Jager, S. et al. Purification and characterization of HIV–human protein complexes. Methods 53, 13–19 (2011).

    CAS  Article  Google Scholar 

  57. 57

    Verschueren, E. et al. Scoring large-scale affinity purification mass spectrometry datasets with MiST. Curr. Protoc. Bioinformatics 49, 8 19 11–18 19 16 (2015).

    Google Scholar 

  58. 58

    Sowa, M. E., Bennett, E. J., Gygi, S. P. & Harper, J. W. Defining the human deubiquitinating enzyme interaction landscape. Cell 138, 389–403 (2009).

    CAS  Article  Google Scholar 

  59. 59

    Chiang, C. Y. et al. Cofactors required for TLR7- and TLR9-dependent innate immune responses. Cell Host Microbe 11, 306–318 (2012).

    CAS  Article  Google Scholar 

  60. 60

    Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).

    CAS  Article  Google Scholar 

  61. 61

    Dang, O., Navarro, L., Anderson, K. & David, M. Cutting edge: anthrax lethal toxin inhibits activation of IFN-regulatory factor 3 by lipopolysaccharide. J. Immunol. 172, 747–751 (2004).

    CAS  Article  Google Scholar 

  62. 62

    Runge, S. et al. In vivo ligands of MDA5 and RIG-I in measles virus-infected cells. PLoS Pathog. 10, e1004081 (2014).

    Article  Google Scholar 

  63. 63

    Weber, M. & Weber, F. Monitoring activation of the antiviral pattern recognition receptors RIG-I and PKR by limited protease digestion and native PAGE. J. Vis. Exp. 89, e51415 (2014).

    Google Scholar 

  64. 64

    Matrosovich, M., Matrosovich, T., Garten, W. & Klenk, H. D. New low-viscosity overlay medium for viral plaque assays. Virol. J. 3, 63 (2006).

    Article  Google Scholar 

Download references


The authors acknowledge the Krogan laboratory for running and analysis of the AP-MS experiments, M. Schneider for help with editing the manuscript and the Chanda laboratory for discussions and advice. The authors thank R. Albrecht for providing the H1N1 PR8/34 IAV stocks used in the in vivo mouse experiments and C. Lässig and K.-P. Hopfner for providing recombinant RIG-I protein for in vitro assays. The authors acknowledge support from the National Institutes of Health (U19 AI106754 and P50 GM085764). This work was also supported by a grant from the James B. Pendleton Charitable Trust and by CRIP (Center for Research on Influenza Pathogenesis), an NIAID funded Center of Excellence for Influenza Research and Surveillance (CEIRS, contract no. HHSN272201400008C).

Author information




S.S., S.M.Y. and S.K.C. wrote the manuscript. S.S., R.K., S.M.Y. and S.K.C. designed experiments and interpreted data. Y.Z. and A.G.-S. interpreted data. S.S., A.R.-F., S.M.Y., F.G., N.J.H., S.T., V.R.M.T.B., A.I., M.T.S.-A., E.d.C., P.D.D.J., Q.N. and N.J.K. performed experiments. H.M. and D.A.S. provided reagents.

Corresponding authors

Correspondence to Sunnie M. Yoh or Sumit K. Chanda.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–12, Supplementary Discussion, Supplementary Methods, Supplementary References. (PDF 2297 kb)

Supplementary Table 1

RSA analysis of RIG-I positive regulator screen. (XLSX 3747 kb)

Supplementary Table 2

RSA analysis of RIG-I negative regulator screen. (XLSX 2425 kb)

Supplementary Table 3

Summary of RIG-I negative regulator selection strategy. (XLSX 102 kb)

Supplementary Table 4

AP-MS analysis of RIG-I signalling factors. (XLSX 373 kb)

Supplementary Table 5

Gene ontology and functional enrichment of the RIG-I protein network. (XLSX 53 kb)

Supplementary Table 6

Binary interactions of the RIG-I pathway interaction map (Fig. 1d). (XLSX 51 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Soonthornvacharin, S., Rodriguez-Frandsen, A., Zhou, Y. et al. Systems-based analysis of RIG-I-dependent signalling identifies KHSRP as an inhibitor of RIG-I receptor activation. Nat Microbiol 2, 17022 (2017).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing