Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bacteriophage evolution differs by host, lifestyle and genome

Abstract

Bacteriophages play key roles in microbial evolution1,2, marine nutrient cycling3 and human disease4. Phages are genetically diverse, and their genome architectures are characteristically mosaic, driven by horizontal gene transfer with other phages and host genomes5. As a consequence, phage evolution is complex and their genomes are composed of genes with distinct and varied evolutionary histories6,7. However, there are conflicting perspectives on the roles of mosaicism and the extent to which it generates a spectrum of genome diversity8 or genetically discrete populations9,10. Here, we show that bacteriophages evolve within two general evolutionary modes that differ in the extent of horizontal gene transfer by an order of magnitude. Temperate phages distribute into high and low gene flux modes, whereas lytic phages share only the lower gene flux mode. The evolutionary modes are also a function of the bacterial host and different proportions of temperate and lytic phages are distributed in either mode depending on the host phylum. Groups of genetically related phages fall into either the high or low gene flux modes, suggesting there are genetic as well as ecological drivers of horizontal gene transfer rates. Consequently, genome mosaicism varies depending on the host, lifestyle and genetic constitution of phages.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two evolutionary modes correlate with phage lifestyle.
Figure 2: Phage clusters exhibit unique evolutionary trajectories.
Figure 3: Evolutionary modes correlate with different rates of HGT.
Figure 4: Host phyla exhibit diversity in phage evolutionary modes.

References

  1. Canchaya, C., Fournous, G. & Brussow, H. The impact of prophages on bacterial chromosomes. Mol. Microbiol. 53, 9–18 (2004).

    Article  CAS  PubMed  Google Scholar 

  2. Bondy-Denomy, J. et al. Prophages mediate defense against phage infection through diverse mechanisms. ISME J. 10, 2854–2866 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  3. Rodriguez-Brito, B. et al. Viral and microbial community dynamics in four aquatic environments. ISME J. 4, 739–751 (2010).

    Article  PubMed  Google Scholar 

  4. Brussow, H., Canchaya, C. & Hardt, W. D. Phages and the evolution of bacterial pathogens: from genomic rearrangements to lysogenic conversion. Microbiol. Mol. Biol. Rev. 68, 560–602 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pedulla, M. L. et al. Origins of highly mosaic mycobacteriophage genomes. Cell 113, 171–182 (2003).

    Article  CAS  PubMed  Google Scholar 

  6. Lawrence, J. G., Hatfull, G. F. & Hendrix, R. W. Imbroglios of viral taxonomy: genetic exchange and failings of phenetic approaches. J. Bacteriol. 184, 4891–4905 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Hendrix, R. W., Smith, M. C., Burns, R. N., Ford, M. E. & Hatfull, G. F. Evolutionary relationships among diverse bacteriophages and prophages: all the world's a phage. Proc. Natl Acad. Sci. USA 96, 2192–2197 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pope, W. H. et al. Whole genome comparison of a large collection of mycobacteriophages reveals a continuum of phage genetic diversity. elife 4, e06416 (2015).

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deng, L. et al. Viral tagging reveals discrete populations in Synechococcus viral genome sequence space. Nature 513, 242–245 (2014).

    Article  CAS  PubMed  Google Scholar 

  10. Roux, S., Hallam, S. J., Woyke, T. & Sullivan, M. B. Viral dark matter and virus–host interactions resolved from publicly available microbial genomes. eLife 4, e08490 (2015).

    Article  PubMed Central  Google Scholar 

  11. Jordan, T. C. et al. A broadly implementable research course in phage discovery and genomics for first-year undergraduate students. mBio 5, e01051–13 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  12. Ondov, B. D. et al. Mash: fast genome and metagenome distance estimation using MinHash. Genome Biol. 17, 132 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  13. Hatfull, G. F. et al. Exploring the mycobacteriophage metaproteome: phage genomics as an educational platform. PLoS Genet. 2, e92 (2006).

    Article  PubMed  PubMed Central  Google Scholar 

  14. Cresawn, S. G. et al. Phamerator: a bioinformatic tool for comparative bacteriophage genomics. BMC Bioinformatics 12, 395 (2011).

    Article  PubMed  PubMed Central  Google Scholar 

  15. Grazziotin, A. L., Koonin, E. V. & Kristensen, D. M. Prokaryotic virus orthologous groups (pVOGs): a resource for comparative genomics and protein family annotation. Nucleic Acids Res. 45, D491–D498 (2017).

    Article  CAS  PubMed  Google Scholar 

  16. Hatfull, G. F. et al. Comparative genomic analysis of 60 mycobacteriophage genomes: genome clustering, gene acquisition, and gene size. J. Mol. Biol. 397, 119–143 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Knowles, B. et al. Lytic to temperate switching of viral communities. Nature 531, 466–470 (2016).

    Article  CAS  PubMed  Google Scholar 

  18. Bobay, L. M., Rocha, E. P. & Touchon, M. The adaptation of temperate bacteriophages to their host genomes. Mol. Biol. Evol. 30, 737–751 (2013).

    Article  CAS  PubMed  Google Scholar 

  19. Chopin, A., Bolotin, A., Sorokin, A., Ehrlich, S. D. & Chopin, M. Analysis of six prophages in Lactococcus lactis IL1403: different genetic structure of temperate and virulent phage populations. Nucleic Acids Res. 29, 644–651 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Lima-Mendez, G., Van Helden, J., Toussaint, A. & Leplae, R. Reticulate representation of evolutionary and functional relationships between phage genomes. Mol. Biol. Evol. 25, 762–777 (2008).

    Article  CAS  PubMed  Google Scholar 

  21. Lucks, J. B., Nelson, D. R., Kudla, G. R. & Plotkin, J. B. Genome landscapes and bacteriophage codon usage. PLoS Comput. Biol. 4, e1000001 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  22. Perez Sepulveda, B. et al. Marine phage genomics: the tip of the iceberg. FEMS Microbiol. Lett. 363, fnw158 (2016).

    Article  PubMed  PubMed Central  Google Scholar 

  23. Grose, J. H. & Casjens, S. R. Understanding the enormous diversity of bacteriophages: the tailed phages that infect the bacterial family Enterobacteriaceae. Virology 468–470, 421–443 (2014).

    Article  PubMed  Google Scholar 

  24. Konstantinidis, K. T., Ramette, A. & Tiedje, J. M. The bacterial species definition in the genomic era. Phil. Trans. R. Soc. Lond. B 361, 1929–1940 (2006).

    Article  Google Scholar 

  25. Rodriguez-R, L. M. & Konstantinidis, K. T. Bypassing cultivation to identify bacterial species. ASM Microbe Magazine 9, 111–118 (2014).

    Article  Google Scholar 

  26. Varghese, N. J. et al. Microbial species delineation using whole genome sequences. Nucleic Acids Res. 43, 6761–6771 (2015).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Puigbo, P., Lobkovsky, A. E., Kristensen, D. M., Wolf, Y. I. & Koonin, E. V. Genomes in turmoil: quantification of genome dynamics in prokaryote supergenomes. BMC Biol. 12, 66 (2014).

    Article  PubMed  PubMed Central  Google Scholar 

  28. Dedrick, R. M. et al. Prophage-mediated defence against viral attack and viral counter-defence. Nat. Microbiol. 2, 16251 (2017).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hendrix, R. W., Roberts, J. W., Stahl, F. W. & Weisberg, R. A. Lambda II (Cold Spring Harbor Press, 1983).

    Google Scholar 

  30. Jacobs-Sera, D. et al. On the nature of mycobacteriophage diversity and host preference. Virology 434, 187–201 (2012).

    Article  CAS  PubMed  Google Scholar 

  31. Marinelli, L. J. et al. Propionibacterium acnes bacteriophages display limited genetic diversity and broad killing activity against bacterial skin isolates. mBio 3, e00279-12 (2012).

    Article  PubMed  PubMed Central  Google Scholar 

  32. Cock, P. J. et al. Biopython: freely available Python tools for computational molecular biology and bioinformatics. Bioinformatics 25, 1422–1423 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Huerta-Cepas, J., Dopazo, J. & Gabaldon, T. ETE A python environment for tree exploration. BMC Bioinformatics 11, 24 (2010).

    Article  PubMed  PubMed Central  Google Scholar 

  34. McNair, K., Bailey, B. A. & Edwards, R. A. PHACTS, a computational approach to classifying the lifestyle of phages. Bioinformatics 28, 614–618 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Leplae, R., Lima-Mendez, G. & Toussaint, A. ACLAME: a CLAssification of Mobile genetic Elements, update 2010. Nucleic Acids Res. 38, D57–D61 (2010).

    Article  CAS  PubMed  Google Scholar 

  36. Chithambaram, S., Prabhakaran, R. & Xia, X. Differential codon adaptation between dsDNA and ssDNA phages in Escherichia coli. Mol. Biol. Evol. 31, 1606–1617 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Klumpp, J. & Loessner, M. J. Listeria phages: genomes, evolution, and application. Bacteriophage 3, e26861 (2013).

    Article  PubMed  PubMed Central  Google Scholar 

  38. Sau, K., Gupta, S. K., Sau, S. & Ghosh, T. C. Synonymous codon usage bias in 16 Staphylococcus aureus phages: implication in phage therapy. Virus Res. 113, 123–131 (2005).

    Article  CAS  PubMed  Google Scholar 

  39. Marchler-Bauer, A. et al. CDD: a database of conserved domain alignments with links to domain three-dimensional structure. Nucleic Acids Res. 30, 281–283 (2002).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dedrick, R. M. et al. Function, expression, specificity, diversity and incompatibility of actinobacteriophage parABS systems. Mol. Microbiol. 101, 625–644 (2016).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Pope, W. H. et al. Cluster K mycobacteriophages: insights into the evolutionary origins of mycobacteriophage TM4. PLoS ONE 6, e26750 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Konstantinidis, K. T. & Tiedje, J. M. Genomic insights that advance the species definition for prokaryotes. Proc. Natl Acad. Sci. USA 102, 2567–2572 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Tatusov, R. L., Koonin, E. V. & Lipman, D. J. A genomic perspective on protein families. Science 278, 631–637 (1997).

    Article  CAS  PubMed  Google Scholar 

  44. Hatfull, G. F. & Hendrix, R. W. Bacteriophages and their genomes. Curr. Opin. Virol. 1, 298–303 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Loytynoja, A. & Goldman, N. webPRANK a phylogeny-aware multiple sequence aligner with interactive alignment browser. BMC Bioinformatics 11, 579 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    Article  CAS  PubMed  Google Scholar 

  47. Csuros, M. Count: evolutionary analysis of phylogenetic profiles with parsimony and likelihood. Bioinformatics 26, 1910–1912 (2010).

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

The authors thank J. Lawrence, R. Hendrix and N. Clark for discussions and R. Dedrick, D. Jacobs-Sera and W. Pope for comments on the manuscript. This research was supported by funding from National Institutes of Health grant GM116884, by Howard Hughes Medical Institute grant 54308198 and by National Science Foundation Graduate Research Fellowship grant 1247842.

Author information

Authors and Affiliations

Authors

Contributions

T.N.M. performed the experiments. T.N.M. and G.F.H. interpreted the results and wrote the paper.

Corresponding author

Correspondence to Graham F. Hatfull.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–11. (PDF 8366 kb)

Supplementary Data 1

This file contains list of phages used in this study, together with associated information. (CSV 558 kb)

Supplementary Data 2

This file contains raw data with all pairwise genome comparisons. (CSV 178319 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mavrich, T., Hatfull, G. Bacteriophage evolution differs by host, lifestyle and genome. Nat Microbiol 2, 17112 (2017). https://doi.org/10.1038/nmicrobiol.2017.112

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2017.112

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing