Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A fungal pathogen secretes plant alkalinizing peptides to increase infection

A Corrigendum to this article was published on 09 May 2016

Abstract

Plant infections caused by fungi are often associated with an increase in the pH of the surrounding host tissue1. Extracellular alkalinization is thought to contribute to fungal pathogenesis, but the underlying mechanisms are poorly understood. Here, we show that the root-infecting fungus Fusarium oxysporum uses a functional homologue of the plant regulatory peptide RALF (rapid alkalinization factor)2,3 to induce alkalinization and cause disease in plants. An upshift in extracellular pH promotes infectious growth of Fusarium by stimulating phosphorylation of a conserved mitogen-activated protein kinase essential for pathogenicity4,5. Fungal mutants lacking a functional Fusarium (F)-RALF peptide failed to induce host alkalinization and showed markedly reduced virulence in tomato plants, while eliciting a strong host immune response. Arabidopsis plants lacking the receptor-like kinase FERONIA, which mediates the RALF-triggered alkalinization response6, displayed enhanced resistance against Fusarium. RALF homologues are found across a number of phylogenetically distant groups of fungi, many of which infect plants. We propose that fungal pathogens use functional homologues of alkalinizing peptides found in their host plants to increase their infectious potential and suppress host immunity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: High extracellular pH promotes invasive growth, plant infection and phosphorylation of the pathogenicity-associated MAPK Fmk1 in F. oxysporum.
Figure 2: Fusarium oxysporum encodes a functional RALF peptide.
Figure 3: F-RALF promotes fungal virulence and suppresses plant immune responses.
Figure 4: F-RALF targets the plant RLK FERONIA.

Similar content being viewed by others

References

  1. Prusky, D. & Yakoby, N. Pathogenic fungi: leading or led by ambient pH? Mol. Plant Pathol. 4, 509–516 (2003).

    Article  CAS  Google Scholar 

  2. Murphy, E. & De Smet, I. Understanding the RALF family: a tale of many species. Trends Plant Sci. 19, 664–671 (2014).

    Article  CAS  Google Scholar 

  3. Pearce, G., Moura, D. S., Stratmann, J. & Ryan, C. A. Jr . RALF, a 5-kDa ubiquitous polypeptide in plants, arrests root growth and development. Proc. Natl Acad. Sci. USA 98, 12843–12847 (2001).

    Article  CAS  Google Scholar 

  4. Di Pietro, A., Garcia-Maceira, F. I., Meglecz, E. & Roncero, M. I. A MAP kinase of the vascular wilt fungus Fusarium oxysporum is essential for root penetration and pathogenesis. Mol. Microbiol. 39, 1140–1152 (2001).

    Article  CAS  Google Scholar 

  5. Turra, D., Segorbe, D. & Di Pietro, A. Protein kinases in plant pathogenic fungi: conserved regulators of infection. Annu. Rev. Phytopathol. 52, 267–288 (2014).

    Article  CAS  Google Scholar 

  6. Haruta, M., Sabat, G., Stecker, K., Minkoff, B. B. & Sussman, M. R. A peptide hormone and its receptor protein kinase regulate plant cell expansion. Science 343, 408–411 (2014).

    Article  CAS  Google Scholar 

  7. Cessna, S. G., Sears, V. E., Dickman, M. B. & Low, P. S. Oxalic acid, a pathogenicity factor for Sclerotinia sclerotiorum, suppresses the oxidative burst of the host plant. Plant Cell 12, 2191–2200 (2000).

    Article  CAS  Google Scholar 

  8. Prusky, D., McEvoy, J. L., Leverentz, B. & Conway, W. S. Local modulation of host pH by Colletotrichum species as a mechanism to increase virulence. Mol. Plant Microbe Interact. 14, 1105–1113 (2001).

    Article  CAS  Google Scholar 

  9. Dean, R. et al. The top 10 fungal pathogens in molecular plant pathology. Mol. Plant Pathol. 13, 414–430 (2012).

    Article  Google Scholar 

  10. Mulkey, T. J. & Evans, M. L. Geotropism in corn roots: evidence for its mediation by differential acid efflux. Science 212, 70–71 (1981).

    Article  CAS  Google Scholar 

  11. Xu, J. R. & Hamer, J. E. MAP kinase and cAMP signaling regulate infection structure formation and pathogenic growth in the rice blast fungus Magnaporthe grisea. Genes Dev. 10, 2696–2706 (1996).

    Article  CAS  Google Scholar 

  12. Lopez-Berges, M. S., Rispail, N., Prados-Rosales, R. C. & Di Pietro, A. A nitrogen response pathway regulates virulence functions in Fusarium oxysporum via the protein kinase TOR and the bZIP protein MeaB. Plant Cell 22, 2459–2475 (2010).

    Article  CAS  Google Scholar 

  13. Srivastava, R., Liu, J. X., Guo, H., Yin, Y. & Howell, S. H. Regulation and processing of a plant peptide hormone, AtRALF23, in Arabidopsis. Plant J. 59, 930–939 (2009).

    Article  CAS  Google Scholar 

  14. Pearce, G., Yamaguchi, Y., Munske, G. & Ryan, C. A. Structure–activity studies of RALF, rapid alkalinization factor, reveal an essential—YISY—motif. Peptides 31, 1973–1977 (2010).

    Article  CAS  Google Scholar 

  15. Soanes, D. & Richards, T. A. Horizontal gene transfer in eukaryotic plant pathogens. Annu. Rev. Phytopathol. 52, 583–614 (2014).

    Article  CAS  Google Scholar 

  16. Ludin, P., Nilsson, D. & Mäser, P. Genome-wide identification of molecular mimicry candidates in parasites. PLoS ONE 6, e17546 (2011).

    Article  CAS  Google Scholar 

  17. Johnson, L. S., Eddy, S. R. & Portugaly, E. Hidden Markov model speed heuristic and iterative HMM search procedure. BMC Bioinformatics 11, 431 (2010).

    Article  Google Scholar 

  18. de Jonge, R., Bolton, M. D. & Thomma, B. P. How filamentous pathogens co-opt plants: the ins and outs of fungal effectors. Curr. Opin. Plant Biol. 14, 400–406 (2011).

    Article  Google Scholar 

  19. van Kan, J. A., Joosten, M. H., Wagemakers, C. A., van den Berg-Velthuis, G. C. & de Wit, P. J. Differential accumulation of mRNAs encoding extracellular and intracellular PR proteins in tomato induced by virulent and avirulent races of Cladosporium fulvum. Plant Mol. Biol. 20, 513–527 (1992).

    Article  CAS  Google Scholar 

  20. Vera, P., Tornero, P. & Conejero, V. Cloning and expression analysis of a viroid-induced peroxidase from tomato plants. Mol. Plant Microbe Interact. 6, 790–794 (1993).

    CAS  PubMed  Google Scholar 

  21. Jabs, T., Dietrich, R. A. & Dangl, J. L. Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273, 1853–1856 (1996).

    Article  CAS  Google Scholar 

  22. Luna, E. et al. Callose deposition: a multifaceted plant defense response. Mol. Plant Microbe Interact. 24, 183–193 (2011).

    Article  CAS  Google Scholar 

  23. Escobar-Restrepo, J. M. et al. The FERONIA receptor-like kinase mediates male–female interactions during pollen tube reception. Science 317, 656–660 (2007).

    Article  CAS  Google Scholar 

  24. The Tomato Genome Consortium. The tomato genome sequence provides insights into fleshy fruit evolution. Nature 485, 635–641 (2012).

    Article  Google Scholar 

  25. Hou, S. et al. The secreted peptide PIP1 amplifies immunity through receptor-like kinase 7. PLoS Pathogens 10, e1004331 (2014).

    Article  Google Scholar 

  26. Bulgarelli, D. et al. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 488, 91–95 (2012).

    Article  CAS  Google Scholar 

  27. Kessler, S. A. et al. Conserved molecular components for pollen tube reception and fungal invasion. Science 330, 968–971 (2010).

    Article  CAS  Google Scholar 

  28. Keinath, N. F. et al. PAMP (pathogen-associated molecular pattern)-induced changes in plasma membrane compartmentalization reveal novel components of plant immunity. J. Biol. Chem. 285, 39140–39149 (2010).

    Article  CAS  Google Scholar 

  29. Kistler, H., Bosland, P., Benny, U., Leong, S. & Williams, P. Relatedness of strains of Fusarium oxysporum from crucifers measured by examination of mitochondrial and ribosomal DNA. Phytopathology 77, 1289–1293 (1987).

    Article  CAS  Google Scholar 

  30. Perez-Nadales, E. & Di Pietro, A. The membrane mucin Msb2 regulates invasive growth and plant infection in Fusarium oxysporum. Plant Cell 23, 1171–1185 (2011).

    Article  CAS  Google Scholar 

  31. Alonso, J. M. et al. Genome-wide insertional mutagenesis of Arabidopsis thaliana. Science 301, 653–657 (2003).

    Article  Google Scholar 

  32. Felix, G., Grosskopf, D. G., Regenass, M., Basse, C. W. & Boller, T. Elicitor-induced ethylene biosynthesis in tomato cells: characterization and use as a bioassay for elicitor action. Plant Physiol. 97, 19–25 (1991).

    Article  CAS  Google Scholar 

  33. Edgar, R. C. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5, 113 (2004).

    Article  Google Scholar 

  34. Gouy, M., Guindon, S. & Gascuel, O. SeaView version 4: a multiplatform graphical user interface for sequence alignment and phylogenetic tree building. Mol. Biol. Evol. 27, 221–224 (2010).

    Article  CAS  Google Scholar 

  35. Richards, T. A. et al. Phylogenomic analysis demonstrates a pattern of rare and ancient horizontal gene transfer between plants and fungi. Plant Cell 21, 1897–1911 (2009).

    Article  CAS  Google Scholar 

  36. Stamatakis, A. RAxML version 8: a tool for phylogenetic analysis and post-analysis of large phylogenies. Bioinformatics 30, 1312–1313 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank E. Martínez Aguilera for technical assistance and A. Ramiro for help with Arabidopsis experiments. This work was supported by grant no. BIO2013-47870-R from the Spanish Ministerio de Innovación y Competitividad (MINECO) to A.D.P. S.M. has received an undergraduate student fellowship from MINECO. D.S. was supported by project BIO2008-04479 from MINECO/ERA-NET PathoGenoMics. M.L.R. was supported by project BIO296 from the Junta de Andalucia. M.E.G. was supported by a Marie Curie Initial Training Network (ITN) ARIADNE (FP7-PEOPLE-ITN-237936) grant from the European Commission. U.F. was supported by the German Federal Ministry of Education and Research–Knowledge-Based Bio-Economy in Europe (BMBF–KBBE) project 031A328 and G.F. was funded by the Deutsche Forschungsgemeinschaft through CRC 1101.

Author information

Authors and Affiliations

Authors

Contributions

A.D.P., D.T., T.A.R. and G.F. designed the experiments. S.M., D.S., D.T., M.L.R., U.F., M.E.G., G.L. and T.A.R. carried out the experiments and analysed the data. A.D.P., G.F. and T.A.R. wrote the manuscript.

Corresponding author

Correspondence to Antonio Di Pietro.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Figures 1–8 and Supplementary Table 3. (PDF 9961 kb)

Supplementary Table 1

Genomes searched (XLSX 34 kb)

Supplementary Table 2

Results of JackHMMEr searches (XLS 267 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Masachis, S., Segorbe, D., Turrà, D. et al. A fungal pathogen secretes plant alkalinizing peptides to increase infection. Nat Microbiol 1, 16043 (2016). https://doi.org/10.1038/nmicrobiol.2016.43

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/nmicrobiol.2016.43

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing