Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays

Abstract

Localized accessibility of critical DNA sequences to the regulatory machinery is a key requirement for regulation of human genes. Here we describe a high-resolution, genome-scale approach for quantifying chromatin accessibility by measuring DNase I sensitivity as a continuous function of genome position using tiling DNA microarrays (DNase-array). We demonstrate this approach across 1% (30 Mb) of the human genome, wherein we localized 2,690 classical DNase I hypersensitive sites with high sensitivity and specificity, and also mapped larger-scale patterns of chromatin architecture. DNase I hypersensitive sites exhibit marked aggregation around transcriptional start sites (TSSs), though the majority mark nonpromoter functional elements. We also developed a computational approach for visualizing higher-order features of chromatin structure. This revealed that human chromatin organization is dominated by large (100–500 kb) 'superclusters' of DNase I hypersensitive sites, which encompass both gene-rich and gene-poor regions. DNase-array is a powerful and straightforward approach for systematic exposition of the cis-regulatory architecture of complex genomes.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Approach for high-resolution mapping of accessible chromatin in human cells using DNase-array.
Figure 2: Chromatin accessibility at both megabase and fine scale.
Figure 3: Regulatory elements of the Th2 cytokine cluster.
Figure 4: Genomic distribution of DNase I hypersensitive sites relative to genes and transcripts.
Figure 5: Higher-order chromatin features revealed by DNase-array.

Similar content being viewed by others

Accession codes

Accessions

Gene Expression Omnibus

References

  1. Felsenfeld, G. Chromatin as an essential part of the transcriptional mechanism. Nature 355, 219–224 (1992).

    Article  CAS  Google Scholar 

  2. Felsenfeld, G. & Groudine, M. Controlling the double helix. Nature 421, 448–453 (2003).

    Article  Google Scholar 

  3. Wu, C. The 5′ ends of Drosophila heat shock genes in chromatin are hypersensitive to DNase. Nature 286, 854–860 (1980).

    Article  CAS  Google Scholar 

  4. Keene, M.A., Corces, V., Lowenhaupt, K. & Elgin, S.C. DNase I hypersensitive sites in Drosophila chromatin occur at the 5′ ends of regions of transcription. Proc. Natl. Acad. Sci. USA 78, 143–146 (1981).

    Article  CAS  Google Scholar 

  5. McGhee, J.D., Wood, W.I., Dolan, M., Engel, J.D. & Felsenfeld, G. A 200 base pair region at the 5′ end of the chicken adult β-globin gene is accessible to nuclease digestion. Cell 27, 45–55 (1981).

    Article  CAS  Google Scholar 

  6. Gross, D.S. & Garrard, W.T. Nuclease hypersensitive sites in chromatin. Annu. Rev. Biochem. 57, 159–197 (1988).

    Article  CAS  Google Scholar 

  7. Li, Q., Peterson, K.R., Fang, X. & Stamatoyannopoulos, G. Locus control regions. Blood 100, 3077–3086 (2002).

    Article  CAS  Google Scholar 

  8. Weintraub, H. & Groudine, M. Chromosomal subunits in active genes have an altered conformation. Science 193, 848–856 (1976).

    Article  CAS  Google Scholar 

  9. Felsenfeld, G. et al. Chromatin boundaries and chromatin domains. Cold Spring Harb. Symp. Quant. Biol. 69, 245–250 (2004).

    Article  CAS  Google Scholar 

  10. Sproul, D., Gilbert, N. & Bickmore, W.A. The role of chromatin structure in regulating the expression of clustered genes. Nat. Rev. Genet. 6, 775–781 (2005).

    Article  CAS  Google Scholar 

  11. The Encode Consortium. The ENCODE (ENCyclopedia Of DNA Elements) Project. Science 306, 636–640 (2004).

  12. Elgin, S.C. The formation and function of DNase I hypersensitive sites in the process of gene activation. J. Biol. Chem. 263, 19259–19262 (1988).

    CAS  PubMed  Google Scholar 

  13. Dorschner, M.O. et al. High-throughput localization of functional elements by quantitative chromatin profiling. Nat. Methods 1, 219–225 (2004).

    Article  CAS  Google Scholar 

  14. Lee, G.R., Fields, P.E., Griffin, T.J. & Flavell, R.A. Regulation of the Th2 cytokine locus by a locus control region. Immunity 19, 145–153 (2003).

    Article  CAS  Google Scholar 

  15. Lee, G.R., Spilianakis, C.G. & Flavell, R.A. Hypersensitive site 7 of the TH2 locus control region is essential for expressing TH2 cytokine genes and for long-range intrachromosomal interactions. Nat. Immunol. 6, 42–48 (2005).

    Article  CAS  Google Scholar 

  16. Loots, G.G. et al. Identification of a coordinate regulator of interleukins 4, 13, and 5 by cross-species sequence comparisons. Science 288, 136–140 (2000).

    Article  CAS  Google Scholar 

  17. Ansel, K.M. et al. Deletion of a conserved Il4 silencer impairs T helper type 1-mediated immunity. Nat. Immunol. 5, 1251–1259 (2004).

    Article  CAS  Google Scholar 

  18. Smale, S.T. & Kadonaga, J.T. The RNA polymerase II core promoter. Annu. Rev. Biochem. 72, 449–479 (2003).

    Article  CAS  Google Scholar 

  19. West, A.G. & Fraser, P. Remote control of gene transcription. Hum. Mol. Genet. 14 (Spec. No. 1), R101–111 (2005).

    Article  CAS  Google Scholar 

  20. Yelin, R. et al. Widespread occurrence of antisense transcription in the human genome. Nat. Biotechnol. 21, 379–386 (2003).

    Article  CAS  Google Scholar 

  21. Cawley, S. et al. Unbiased mapping of transcription factor binding sites along human chromosomes 21 and 22 points to widespread regulation of noncoding RNAs. Cell 116, 499–509 (2004).

    Article  CAS  Google Scholar 

  22. Katayama, S. et al. Antisense transcription in the mammalian transcriptome. Science 309, 1564–1566 (2005).

    Article  Google Scholar 

  23. Hinrichs, A.S. et al. The UCSC Genome Browser Database: update 2006. Nucleic Acids Res. 34, D590–D598 (2006).

    Article  CAS  Google Scholar 

  24. Percival, D.B. Wavelet methods for time series analysis (Cambridge University Press, Cambridge, 2000).

    Book  Google Scholar 

  25. Korenberg, J.R. et al. Down syndrome phenotypes: the consequences of chromosomal imbalance. Proc. Natl. Acad. Sci. USA 91, 4997–5001 (1994).

    Article  CAS  Google Scholar 

  26. Ren, B. et al. Genome-wide location and function of DNA binding proteins. Science 290, 2306–2309 (2000).

    Article  CAS  Google Scholar 

  27. Sabo, P.J. et al. Discovery of functional noncoding elements by digital analysis of chromatin structure. Proc. Natl. Acad. Sci. USA 101, 16837–16842 (2004).

    Article  CAS  Google Scholar 

  28. Sabo, P.J. et al. Genome-wide identification of DNaseI hypersensitive sites using active chromatin sequence libraries. Proc. Natl. Acad. Sci. USA 101, 4537–4542 (2004).

    Article  CAS  Google Scholar 

  29. McArthur, M., Gerum, S. & Stamatoyannopoulos, G. Quantification of DNaseI-sensitivity by real-time PCR: quantitative analysis of DNaseI-hypersensitivity of the mouse beta-globin LCR. J. Mol. Biol. 313, 27–34 (2001).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the US National Institute of General Medical Sciences and the National Human Genome Research Institute to J.A.S. and W.S.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John A Stamatoyannopoulos.

Ethics declarations

Competing interests

R.D.G. is an employee of NimbleGen Systems, a manufacturer of microarrays, which potentially stands to benefit from the results published in this article.

Supplementary information

Supplementary Fig. 1

Reproducibility of DNase-array. (PDF 31 kb)

Supplementary Fig. 2

Conventional validation of DNase-array. (PDF 3110 kb)

Supplementary Table 1

Shown are location (chromosome, position) of 2,690 DHSs and distance of each to 5′ and 3′ ends of the nearest known gene, mRNA, and spliced EST from the UCSC database. (PDF 226 kb)

Supplementary Table 2

Comparison of DNase-array and conventional Southern validation assays. (PDF 116 kb)

Supplementary Table 3

Primer sequences referred to in Methods and Supplementary Methods. (PDF 53 kb)

Supplementary Methods (PDF 104 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabo, P., Kuehn, M., Thurman, R. et al. Genome-scale mapping of DNase I sensitivity in vivo using tiling DNA microarrays. Nat Methods 3, 511–518 (2006). https://doi.org/10.1038/nmeth890

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing