Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering tumors with 3D scaffolds

Abstract

Microenvironmental conditions control tumorigenesis and biomimetic culture systems that allow for in vitro and in vivo tumor modeling may greatly aid studies of cancer cells' dependency on these conditions. We engineered three-dimensional (3D) human tumor models using carcinoma cells in polymeric scaffolds that recreated microenvironmental characteristics representative of tumors in vivo. Strikingly, the angiogenic characteristics of tumor cells were dramatically altered upon 3D culture within this system, and corresponded much more closely to tumors formed in vivo. Cells in this model were also less sensitive to chemotherapy and yielded tumors with enhanced malignant potential. We assessed the broad relevance of these findings with 3D culture of other tumor cell lines in this same model, comparison with standard 3D Matrigel culture and in vivo experiments. This new biomimetic model may provide a broadly applicable 3D culture system to study the effect of microenvironmental conditions on tumor malignancy in vitro and in vivo.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Characterization of tumor model.
Figure 2: Angiogenic characteristics.
Figure 3: Tumor growth in vivo from cells precultured in 2D and 3D.
Figure 4: Invasiveness and drug responsiveness.

References

  1. 1

    Bissell, M.J. & Radisky, D. Putting tumours in context. Nat. Rev. Cancer 1, 46–54 (2001).

    CAS  Article  Google Scholar 

  2. 2

    Hanahan, D. & Weinberg, R.A. The hallmarks of cancer. Cell 100, 57–70 (2000).

    CAS  Article  Google Scholar 

  3. 3

    Harris, A.L. Hypoxia–a key regulatory factor in tumour growth. Nat. Rev. Cancer 2, 38–47 (2002).

    CAS  Article  Google Scholar 

  4. 4

    Debnath, J. & Brugge, J.S. Modelling glandular epithelial cancers in three-dimensional cultures. Nat. Rev. Cancer 5, 675–688 (2005).

    CAS  Article  Google Scholar 

  5. 5

    Sutherland, R.M. et al. Oxygenation and differentiation in multicellular spheroids of human colon carcinoma. Cancer Res. 46, 5320–5329 (1986).

    CAS  PubMed  Google Scholar 

  6. 6

    Debnath, J., Muthuswamy, S.K. & Brugge, J.S. Morphogenesis and oncogenesis of MCF-10A mammary epithelial acini grown in three-dimensional basement membrane cultures. Methods 30, 256–268 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Lee, G.Y., Kenny, P.A., Lee, E.H. & Bissell, M.J. Three-dimensional culture models of normal and malignant breast epithelial cells. Nat. Methods 4, 359–365 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Adam, M.F., Dorie, M.J. & Brown, J.M. Oxygen tension measurements of tumors growing in mice. Int. J. Radiat. Oncol. Biol. Phys. 45, 171–180 (1999).

    CAS  Article  Google Scholar 

  9. 9

    Zahir, N. et al. Autocrine laminin-5 ligates {alpha}6{beta}4 integrin and activates RAC and NF{kappa}B to mediate anchorage-independent survival of mammary tumors. J. Cell Biol. 163, 1397–1407 (2003).

    CAS  Article  Google Scholar 

  10. 10

    Yuen, H.W. et al. Suppression of laminin-5 expression leads to increased motility, tumorigenicity, and invasion. Exp. Cell Res. 309, 198–210 (2005).

    CAS  Article  Google Scholar 

  11. 11

    Sethi, T. et al. Extracellular matrix proteins protect small cell lung cancer cells against apoptosis: a mechanism for small cell lung cancer growth and drug resistance in vivo. Nat. Med. 5, 662–668 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Zhang, Y., Lu, H., Dazin, P. & Kapila, Y. Squamous cell carcinoma cell aggregates escape suspension-induced, p53-mediated anoikis: fibronectin and integrin {alpha}v mediate survival signals through focal adhesion kinase. J. Biol. Chem. 279, 48342–48349 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Kerbel, R. & Folkman, J. Clinical translation of angiogenesis inhibitors. Nat. Rev. Cancer 2, 727–739 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Le, Y.J. & Corry, P.M. Hypoxia-induced bFGF gene expression is mediated through the JNK signal transduction pathway. Mol. Cell. Biochem. 202, 1–8 (1999).

    CAS  Article  Google Scholar 

  15. 15

    Xie, K. Interleukin-8 and human cancer biology. Cytokine Growth Factor Rev. 12, 375–391 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Mizukami, Y. et al. Induction of interleukin-8 preserves the angiogenic response in HIF-1alpha-deficient colon cancer cells. Nat. Med. 11, 992–997 (2005).

    CAS  Article  Google Scholar 

  17. 17

    Li, A. et al. Autocrine role of interleukin-8 in induction of endothelial cell proliferation, survival, migration and MMP-2 production and angiogenesis. Angiogenesis 8, 63–71 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Christofori, G. New signals from the invasive front. Nature 441, 444–450 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Mueller, M.M. & Fusenig, N.E. Friends or foes - bipolar effects of the tumour stroma in cancer. Nat. Rev. Cancer 4, 839–849 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Janes, S.M. & Watt, F.M. New roles for integrins in squamous-cell carcinoma. Nat. Rev. Cancer 6, 175–183 (2006).

    CAS  Article  Google Scholar 

  21. 21

    Maschler, S. et al. Tumor cell invasiveness correlates with changes in integrin expression and localization. Oncogene 24, 2032–2041 (2005).

    CAS  Article  Google Scholar 

  22. 22

    Qian, F., Zhang, Z.C., Wu, X.F., Li, Y.P. & Xu, Q. Interaction between integrin [alpha]5 and fibronectin is required for metastasis of B16F10 melanoma cells. Biochem. Biophys. Res. Commun. 333, 1269–1275 (2005).

    CAS  Article  Google Scholar 

  23. 23

    Islam, S., Carey, T.E., Wolf, G.T., Wheelock, M.J. & Johnson, K.R. Expression of N-cadherin by human squamous carcinoma cells induces a scattered fibroblastic phenotype with disrupted cell-cell adhesion. J. Cell Biol. 135, 1643–1654 (1996).

    CAS  Article  Google Scholar 

  24. 24

    Desmouliere, A., Guyot, C. & Gabbiani, G. The stroma reaction myofibroblast: a key player in the control of tumor cell behavior. Int. J. Dev. Biol. 48, 509–517 (2004).

    CAS  Article  Google Scholar 

  25. 25

    dit Faute, M.A. et al. Distinctive alterations of invasiveness, drug esistance and cell-cell organization in 3D-cultures of MCF-7, a human breast cancer cell line, and its multidrug resistant variant. Clin. Exp. Metastasis 19, 161–168 (2002).

    Article  Google Scholar 

  26. 26

    Kumar, P. et al. Combination treatment significantly enhances the efficacy of antitumor therapy by preferentially targeting angiogenesis. Lab. Invest. 85, 756–767 (2005).

    CAS  Article  Google Scholar 

  27. 27

    Ferrara, N., Hillan, K.J. & Novotny, W. Bevacizumab (Avastin), a humanized anti-VEGF monoclonal antibody for cancer therapy. Biochem. Biophys. Res. Commun. 333, 328–335 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Alsberg, E., Anderson, K.W., Albeiruti, A., Rowley, J.A. & Mooney, D.J. Engineering growing tissues. Proc. Natl. Acad. Sci. USA 99, 12025–12030 (2002).

    CAS  Article  Google Scholar 

  29. 29

    Richardson, T.P., Peters, M.C., Ennett, A.B. & Mooney, D.J. Polymeric system for dual growth factor delivery. Nat. Biotechnol. 19, 1029–1034 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Harris, L.D., Kim, B.S. & Mooney, D.J. Open pore biodegradable matrices formed with gas foaming. J. Biomed. Mater. Res. 42, 396–402 (1998).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank K. Polyak (Dana Farber Cancer Institute) for her insightful review of this article, P. Kumar (University of Michigan) for helpful discussions, B. Tilton (Harvard University) for assistance with flow cytometry and Oxford Optronics for support with Oxylite measurements. Financial support was provided by the US National Institutes of Health (RO1 HL069957) and the Deutsche Forschungsgemeinschaft (post-doctoral fellowship to C.F.).

Author information

Affiliations

Authors

Corresponding author

Correspondence to David J Mooney.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–7, Supplementary Methods (PDF 1273 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fischbach, C., Chen, R., Matsumoto, T. et al. Engineering tumors with 3D scaffolds. Nat Methods 4, 855–860 (2007). https://doi.org/10.1038/nmeth1085

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing