Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

Computational identification of regulatory DNAs underlying animal development

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of phylogenetic footprinting on model sensitivity.
Figure 2: Dependence of cumulative match P value from informational score (or weighted matrix score) (I).

References

  1. Ohler, U. & Niemann, H. Identification and analysis of eukaryotic promoters: recent computational approaches. Trends Genet. 17, 56–60 (2001).

    Article  CAS  Google Scholar 

  2. Bejerano, G., Siepel, A.C., Kent, W.J. & Haussler, D. Computational screening of conserved genomic DNA in search of functional noncoding elements. Nat. Methods 2, 535–545 (2005).

    Article  CAS  Google Scholar 

  3. Wasserman, W.W. & Sandelin, A. Applied bioinformatics for the identification of regulatory elements. Nat. Rev. Genet. 5, 276–287 (2004).

    Article  CAS  Google Scholar 

  4. Markstein, M., Markstein, P., Markstein, V. & Levine, M.S. Genome-wide analysis of clustered Dorsal binding sites identifies putative target genes in the Drosophila embryo. Proc. Natl. Acad. Sci. USA 99, 763–768 (2002).

    Article  CAS  Google Scholar 

  5. Lifanov, A.P., Makeev, V.J., Nazina, A.G. & Papatsenko, D.A. Homotypic regulatory clusters in Drosophila. Genome Res. 13, 579–588 (2003).

    Article  CAS  Google Scholar 

  6. Schroeder, M.D. et al. Transcriptional control in the segmentation gene network of Drosophila. PLoS Biol. 2, E271 (2004).

    Article  Google Scholar 

  7. Berman, B.P. et al. Computational identification of developmental enhancers: conservation and function of transcription factor binding-site clusters in Drosophila melanogaster and Drosophila pseudoobscura. Genome Biol. 5, R61 (2004).

    Article  Google Scholar 

  8. Kondrakhin, Y.V., Kel, A.E., Kolchanov, N.A., Romashchenko, A.G. & Milanesi, L. Eukaryotic promoter recognition by binding sites for transcription factors. Comput. Appl. Biosci. 11, 477–488 (1995).

    CAS  PubMed  Google Scholar 

  9. Crowley, E.M., Roeder, K. & Bina, M. A statistical model for locating regulatory regions in genomic DNA. J. Mol. Biol. 268, 8–14 (1997).

    Article  CAS  Google Scholar 

  10. Wagner, A. A computational genomics approach to the identification of gene networks. Nucleic Acids Res. 25, 3594–3604 (1997).

    Article  CAS  Google Scholar 

  11. Pickert, L., Reuter, I., Klawonn, F. & Wingender, E. Transcription regulatory region analysis using signal detection and fuzzy clustering. Bioinformatics 14, 244–251 (1998).

    Article  CAS  Google Scholar 

  12. Ovcharenko, I. et al. Evolution and functional classification of vertebrate gene deserts. Genome Res. 15, 137–145 (2005).

    Article  CAS  Google Scholar 

  13. Nelson, C.E., Hersh, B.M. & Carroll, S.B. The regulatory content of intergenic DNA shapes genome architecture. Genome Biol. 5, R25 (2004).

    Article  Google Scholar 

  14. Kent WJ, Hsu F, Karolchik D, Kuhn RM, Clawson H, Trumbower H & Haussler D. Exploring relationships and mining data with the UCSC Gene Sorter. Genome Res. 15, 737–41 (2005).

    Article  CAS  Google Scholar 

  15. Stathopoulos, A. & Levine, M. Whole-genome analysis of Drosophila gastrulation. Curr. Opin. Genet. Dev. 14, 477–84 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Dmitri Papatsenko or Michael Levine.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Papatsenko, D., Levine, M. Computational identification of regulatory DNAs underlying animal development. Nat Methods 2, 529–534 (2005). https://doi.org/10.1038/nmeth0705-529

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth0705-529

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing