Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Editing the epigenome: technologies for programmable transcription and epigenetic modulation

Abstract

Gene regulation is a complex and tightly controlled process that defines cell identity, health and disease, and response to pharmacologic and environmental signals. Recently developed DNA-targeting platforms, including zinc finger proteins, transcription activator-like effectors (TALEs) and the clustered, regularly interspaced, short palindromic repeats (CRISPR)-Cas9 system, have enabled the recruitment of transcriptional modulators and epigenome-modifying factors to any genomic site, leading to new insights into the function of epigenetic marks in gene expression. Additionally, custom transcriptional and epigenetic regulation is facilitating refined control over cell function and decision making. The unique properties of the CRISPR-Cas9 system have created new opportunities for high-throughput genetic screens and multiplexing targets to manipulate complex gene expression patterns. This Review summarizes recent technological developments in this area and their application to biomedical challenges. We also discuss remaining limitations and necessary future directions for this field.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Applications of epigenome editing.
Figure 2: Programmable DBDs.
Figure 3: Orthogonal CRISPR-dCas9 systems for complex regulation of distinct genomic targets.

Accession codes

Accessions

Protein Data Bank

References

  1. 1

    Maston, G.A., Evans, S.K. & Green, M.R. Transcriptional regulatory elements in the human genome. Annu. Rev. Genomics Hum. Genet. 7, 29–59 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  2. 2

    Heintzman, N.D. et al. Distinct and predictive chromatin signatures of transcriptional promoters and enhancers in the human genome. Nat. Genet. 39, 311–318 (2007).

    CAS  Google Scholar 

  3. 3

    ENCODE Project Consortium. et al. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  4. 4

    Roadmap Epigenomics Consortium. et al. Integrative analysis of 111 reference human epigenomes. Nature 518, 317–330 (2015).

  5. 5

    Hnisz, D. et al. Super-enhancers in the control of cell identity and disease. Cell 155, 934–947 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. 6

    Ong, C.T. & Corces, V.G. Enhancer function: new insights into the regulation of tissue-specific gene expression. Nat. Rev. Genet. 12, 283–293 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. 7

    Heintzman, N.D. et al. Histone modifications at human enhancers reflect global cell-type-specific gene expression. Nature 459, 108–112 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. 8

    Ziller, M.J. et al. Charting a dynamic DNA methylation landscape of the human genome. Nature 500, 477–481 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  9. 9

    Schübeler, D. Function and information content of DNA methylation. Nature 517, 321–326 (2015).

    Article  Google Scholar 

  10. 10

    Rada-Iglesias, A. et al. A unique chromatin signature uncovers early developmental enhancers in humans. Nature 470, 279–283 (2011).

    CAS  Google Scholar 

  11. 11

    Jin, Q. et al. Distinct roles of GCN5/PCAF-mediated H3K9ac and CBP/p300-mediated H3K18/27ac in nuclear receptor transactivation. EMBO J. 30, 249–262 (2011).

    CAS  Google Scholar 

  12. 12

    Keung, A.J., Joung, J.K., Khalil, A.S. & Collins, J.J. Chromatin regulation at the frontier of synthetic biology. Nat. Rev. Genet. 16, 159–171 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. 13

    Klug, A. The discovery of zinc fingers and their applications in gene regulation and genome manipulation. Annu. Rev. Biochem. 79, 213–231 (2010).

    CAS  PubMed  Google Scholar 

  14. 14

    Gersbach, C.A., Gaj, T. & Barbas, C.F. 3rd Synthetic zinc finger proteins: the advent of targeted gene regulation and genome modification technologies. Acc. Chem. Res. 47, 2309–2318 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  15. 15

    Boch, J. et al. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326, 1509–1512 (2009).

    CAS  Article  Google Scholar 

  16. 16

    Moscou, M.J. & Bogdanove, A.J. A simple cipher governs DNA recognition by TAL effectors. Science 326, 1501 (2009).

    CAS  Google Scholar 

  17. 17

    Gasiunas, G., Barrangou, R., Horvath, P. & Siksnys, V. Cas9-crRNA ribonucleoprotein complex mediates specific DNA cleavage for adaptive immunity in bacteria. Proc. Natl. Acad. Sci. USA 109, E2579–E2586 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  18. 18

    Mali, P. et al. RNA-guided human genome engineering via Cas9. Science 339, 823–826 (2013).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19

    Cong, L. et al. Multiplex genome engineering using CRISPR/Cas systems. Science 339, 819–823 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  20. 20

    Cho, S.W., Kim, S., Kim, J.M. & Kim, J.S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat. Biotechnol. 31, 230–232 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. 21

    Jinek, M. et al. RNA-programmed genome editing in human cells. Elife 2, e00471 (2013).

    PubMed  PubMed Central  Google Scholar 

  22. 22

    Jinek, M. et al. A programmable dual-RNA-guided DNA endonuclease in adaptive bacterial immunity. Science 337, 816–821 (2012).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  23. 23

    Qi, L.S. et al. Repurposing CRISPR as an RNA-guided platform for sequence-specific control of gene expression. Cell 152, 1173–1183 (2013). This paper contains the first published example of gene expression control with the CRISPR-Cas9 system in mammalian cells.

    CAS  PubMed  PubMed Central  Google Scholar 

  24. 24

    Sternberg, S.H., Redding, S., Jinek, M., Greene, E.C. & Doudna, J.A. DNA interrogation by the CRISPR RNA-guided endonuclease Cas9. Nature 507, 62–67 (2014).

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  25. 25

    Pavletich, N.P. & Pabo, C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 Å. Science 252, 809–817 (1991).

    CAS  Google Scholar 

  26. 26

    Choo, Y., Sanchez-Garcia, I. & Klug, A. In vivo repression by a site-specific DNA-binding protein designed against an oncogenic sequence. Nature 372, 642–645 (1994).

    CAS  Google Scholar 

  27. 27

    Liu, Q., Segal, D.J., Ghiara, J.B. & Barbas, C.F. III Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94, 5525–5530 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. 28

    Ingles, C.J., Shales, M., Cress, W.D., Triezenberg, S.J. & Greenblatt, J. Reduced binding of TFIID to transcriptionally compromised mutants of VP16. Nature 351, 588–590 (1991).

    CAS  Google Scholar 

  29. 29

    Zhang, F. et al. Efficient construction of sequence-specific TAL effectors for modulating mammalian transcription. Nat. Biotechnol. 29, 149–153 (2011).

    PubMed  PubMed Central  Google Scholar 

  30. 30

    Beerli, R.R., Dreier, B. & Barbas, C.F. III Positive and negative regulation of endogenous genes by designed transcription factors. Proc. Natl. Acad. Sci. USA 97, 1495–1500 (2000). This paper is one of the earliest examples of engineering of synthetic transcription factors targeted to endogenous genes.

    CAS  Google Scholar 

  31. 31

    Maeder, M.L. et al. Robust, synergistic regulation of human gene expression using TALE activators. Nat. Methods 10, 243–245 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. 32

    Perez-Pinera, P. et al. Synergistic and tunable human gene activation by combinations of synthetic transcription factors. Nat. Methods 10, 239–242 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  33. 33

    Maeder, M.L. et al. CRISPR RNA-guided activation of endogenous human genes. Nat. Methods 10, 977–979 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. 34

    Mali, P. et al. CAS9 transcriptional activators for target specificity screening and paired nickases for cooperative genome engineering. Nat. Biotechnol. 31, 833–838 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. 35

    Konermann, S. et al. Genome-scale transcriptional activation by an engineered CRISPR-Cas9 complex. Nature 517, 583–588 (2015). These authors developed an improved activator platform by means of structure-guided engineering of the CRISPR-Cas9 complex and used this system to perform gain-of-function screens.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. 36

    Gao, X. et al. Reprogramming to pluripotency using designer TALE transcription factors targeting enhancers. Stem Cell Reports 1, 183–197 (2013). This paper describes TALE-based activation and histone modification of enhancers to guide iPSC reprogramming.

    CAS  PubMed  PubMed Central  Google Scholar 

  37. 37

    Gao, X. et al. Comparison of TALE designer transcription factors and the CRISPR/dCas9 in regulation of gene expression by targeting enhancers. Nucleic Acids Res. 42, e155 (2014).

    PubMed  PubMed Central  Google Scholar 

  38. 38

    Hilton, I.B. et al. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33, 510–517 (2015). This paper reports the first targetable epigenome editing protein with histone acetyltransferase activity and demonstrates the unique capacity for robust gene activation at both promoters and enhancers.

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Polstein, L.R. et al. Genome-wide specificity of DNA-binding, gene regulation, and chromatin remodeling by TALE- and CRISPR/Cas9-based transcriptional activators. Genome Res. 25, 1158–1169 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. 40

    Schmitz, M.L. & Baeuerle, P.A. The p65 subunit is responsible for the strong transcription activating potential of NF-kappa B. EMBO J. 10, 3805–3817 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  41. 41

    Liu, P.Q. et al. Regulation of an endogenous locus using a panel of designed zinc finger proteins targeted to accessible chromatin regions. Activation of vascular endothelial growth factor A. J. Biol. Chem. 276, 11323–11334 (2001).

    CAS  Google Scholar 

  42. 42

    Ji, Q. et al. Engineered zinc-finger transcription factors activate OCT4 (POU5F1), SOX2, KLF4, c-MYC (MYC) and miR302/367. Nucleic Acids Res. 42, 6158–6167 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. 43

    Maeder, M.L. et al. Targeted DNA demethylation and activation of endogenous genes using programmable TALE-TET1 fusion proteins. Nat. Biotechnol. 31, 1137–1142 (2013). The authors demonstrated control over the methylation of endogenous promoters and the expression of the corresponding genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  44. 44

    Frank, C.L. et al. Regulation of chromatin accessibility and Zic binding at enhancers in the developing cerebellum. Nat. Neurosci. 18, 647–656 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. 45

    Perez-Pinera, P. et al. RNA-guided gene activation by CRISPR-Cas9–based transcription factors. Nat. Methods 10, 973–976 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  46. 46

    Farzadfard, F., Perli, S.D. & Lu, T.K. Tunable and multifunctional eukaryotic transcription factors based on CRISPR/Cas. ACS Synth. Biol. 2, 604–613 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  47. 47

    Cheng, A.W. et al. Multiplexed activation of endogenous genes by CRISPR-on, an RNA-guided transcriptional activator system. Cell Res. 23, 1163–1171 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. 48

    Gilbert, L.A. et al. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159, 647–661 (2014). The authors executed loss-of-function and gain-of-function screens in human cells using the CRISPR-Cas9 system and developed guidelines for gRNA targeting to modulate gene expression.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. 49

    Chavez, A. et al. Highly efficient Cas9-mediated transcriptional programming. Nat. Methods 12, 326–328 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. 50

    Chakraborty, S. et al. A CRISPR/Cas9-based system for reprogramming cell lineage specification. Stem Cell Reports 3, 940–947 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Tanenbaum, M.E., Gilbert, L.A., Qi, L.S., Weissman, J.S. & Vale, R.D. A protein-tagging system for signal amplification in gene expression and fluorescence imaging. Cell 159, 635–646 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. 52

    Staudt, M.R. & Dittmer, D.P. The Rta/Orf50 transactivator proteins of the gamma-herpesviridae. Curr. Top. Microbiol. Immunol. 312, 71–100 (2007).

    CAS  Google Scholar 

  53. 53

    Grimm, D. et al. Fatality in mice due to oversaturation of cellular microRNA/short hairpin RNA pathways. Nature 441, 537–541 (2006).

    CAS  Google Scholar 

  54. 54

    Gregory, D.J., Zhang, Y., Kobzik, L. & Fedulov, A.V. Specific transcriptional enhancement of inducible nitric oxide synthase by targeted promoter demethylation. Epigenetics 8, 1205–1212 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. 55

    Chen, H. et al. Induced DNA demethylation by targeting Ten-Eleven Translocation 2 to the human ICAM-1 promoter. Nucleic Acids Res. 42, 1563–1574 (2014).

    CAS  Google Scholar 

  56. 56

    Li, K. et al. Manipulation of prostate cancer metastasis by locus-specific modification of the CRMP4 promoter region using chimeric TALE DNA methyltransferase and demethylase. Oncotarget 6, 10030–10044 (2015).

    PubMed  PubMed Central  Google Scholar 

  57. 57

    Jackson, A.L. et al. Widespread siRNA “off-target” transcript silencing mediated by seed region sequence complementarity. RNA 12, 1179–1187 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  58. 58

    Shalem, O., Sanjana, N.E. & Zhang, F. High-throughput functional genomics using CRISPR-Cas9. Nat. Rev. Genet. 16, 299–311 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  59. 59

    Li, Y. et al. Modular construction of mammalian gene circuits using TALE transcriptional repressors. Nat. Chem. Biol. 11, 207–213 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  60. 60

    Larson, M.H. et al. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8, 2180–2196 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  61. 61

    Garriga-Canut, M. et al. Synthetic zinc finger repressors reduce mutant huntingtin expression in the brain of R6/2 mice. Proc. Natl. Acad. Sci. USA 109, E3136–E3145 (2012).

    CAS  Google Scholar 

  62. 62

    Gilbert, L.A. et al. CRISPR-mediated modular RNA-guided regulation of transcription in eukaryotes. Cell 154, 442–451 (2013). The authors describe one of the original examples of attaching effector domains to the CRISPR-Cas9 system to control gene regulation.

    CAS  PubMed  PubMed Central  Google Scholar 

  63. 63

    Snowden, A.W., Gregory, P.D., Case, C.C. & Pabo, C.O. Gene-specific targeting of H3K9 methylation is sufficient for initiating repression in vivo. Curr. Biol. 12, 2159–2166 (2002).

    CAS  Google Scholar 

  64. 64

    Kearns, N.A. et al. Functional annotation of native enhancers with a Cas9-histone demethylase fusion. Nat. Methods 12, 401–403 (2015). This is one of the first examples of using the CRISPR-Cas9 system to target specific epigenome editing activities. The study also demonstrates unique context-dependent activity of effector domains at promoters and enhancers.

    CAS  PubMed  PubMed Central  Google Scholar 

  65. 65

    Beerli, R.R., Segal, D.J., Dreier, B. & Barbas, C.F. III Toward controlling gene expression at will: specific regulation of the erbB-2/HER-2 promoter by using polydactyl zinc finger proteins constructed from modular building blocks. Proc. Natl. Acad. Sci. USA 95, 14628–14633 (1998).

    CAS  Google Scholar 

  66. 66

    Cong, L., Zhou, R., Kuo, Y.C., Cunniff, M. & Zhang, F. Comprehensive interrogation of natural TALE DNA-binding modules and transcriptional repressor domains. Nat. Commun. 3, 968 (2012).

    PubMed  PubMed Central  Google Scholar 

  67. 67

    Sripathy, S.P., Stevens, J. & Schultz, D.C. The KAP1 corepressor functions to coordinate the assembly of de novo HP1-demarcated microenvironments of heterochromatin required for KRAB zinc finger protein-mediated transcriptional repression. Mol. Cell. Biol. 26, 8623–8638 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  68. 68

    Groner, A.C. et al. KRAB-zinc finger proteins and KAP1 can mediate long-range transcriptional repression through heterochromatin spreading. PLoS Genet. 6, e1000869 (2010).

    PubMed  PubMed Central  Google Scholar 

  69. 69

    Schultz, D.C., Ayyanathan, K., Negorev, D., Maul, G.G. & Rauscher, F.J. 3rd SETDB1: a novel KAP-1-associated histone H3, lysine 9-specific methyltransferase that contributes to HP1-mediated silencing of euchromatic genes by KRAB zinc-finger proteins. Genes Dev. 16, 919–932 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  70. 70

    Reynolds, N. et al. NuRD-mediated deacetylation of H3K27 facilitates recruitment of Polycomb Repressive Complex 2 to direct gene repression. EMBO J. 31, 593–605 (2012).

    CAS  Google Scholar 

  71. 71

    Thakore, P.I. et al. Highly specific epigenome editing by CRISPR-Cas9 repressors for silencing of distal regulatory elements. Nat. Methods 12, 1143–1149 (2015). The authors demonstrate that CRISPR-Cas9 repressors are capable of highly specific gene regulation, DNA targeting, histone modification and chromatin remodeling when targeted to a distal enhancer.

    CAS  PubMed  PubMed Central  Google Scholar 

  72. 72

    David, G. et al. Specific requirement of the chromatin modifier mSin3B in cell cycle exit and cellular differentiation. Proc. Natl. Acad. Sci. USA 105, 4168–4172 (2008).

    CAS  Google Scholar 

  73. 73

    Rivenbark, A.G. et al. Epigenetic reprogramming of cancer cells via targeted DNA methylation. Epigenetics 7, 350–360 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  74. 74

    Stolzenburg, S. et al. Targeted silencing of the oncogenic transcription factor SOX2 in breast cancer. Nucleic Acids Res. 40, 6725–6740 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  75. 75

    Siddique, A.N. et al. Targeted methylation and gene silencing of VEGF-A in human cells by using a designed Dnmt3a-Dnmt3L single-chain fusion protein with increased DNA methylation activity. J. Mol. Biol. 425, 479–491 (2013).

    CAS  Google Scholar 

  76. 76

    Stolzenburg, S. et al. Stable oncogenic silencing in vivo by programmable and targeted de novo DNA methylation in breast cancer. Oncogene 34, 5427–5435 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  77. 77

    Mendenhall, E.M. et al. Locus-specific editing of histone modifications at endogenous enhancers. Nat. Biotechnol. 31, 1133–1136 (2013). This paper reports a TALE-histone demethylase fusion used to disrupt enhancer activity and reveal nearby enhancer gene targets.

    CAS  PubMed  PubMed Central  Google Scholar 

  78. 78

    Konermann, S. et al. Optical control of mammalian endogenous transcription and epigenetic states. Nature 500, 472–476 (2013). The authors incorporated light-responsive dimers with TALE DNA-targeting proteins to dynamically modulate transcription and edit histone marks in vivo in the presence of an optical stimulus.

    CAS  PubMed  PubMed Central  Google Scholar 

  79. 79

    Heller, E.A. et al. Locus-specific epigenetic remodeling controls addiction- and depression-related behaviors. Nat. Neurosci. 17, 1720–1727 (2014). The authors used ZFP-based epigenome editing proteins to establish causal links among epigenetic remodeling, transcription and behavior in the mouse brain in vivo.

    CAS  PubMed  PubMed Central  Google Scholar 

  80. 80

    Kungulovski, G. et al. Targeted epigenome editing of an endogenous locus with chromatin modifiers is not stably maintained. Epigenetics Chromatin 8, 12 (2015).

    PubMed  PubMed Central  Google Scholar 

  81. 81

    Hathaway, N.A. et al. Dynamics and memory of heterochromatin in living cells. Cell 149, 1447–1460 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  82. 82

    Ayyanathan, K. et al. Regulated recruitment of HP1 to a euchromatic gene induces mitotically heritable, epigenetic gene silencing: a mammalian cell culture model of gene variegation. Genes Dev. 17, 1855–1869 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. 83

    Bhaumik, S.R., Smith, E. & Shilatifard, A. Covalent modifications of histones during development and disease pathogenesis. Nat. Struct. Mol. Biol. 14, 1008–1016 (2007).

    CAS  Google Scholar 

  84. 84

    Grimmer, M.R. et al. Analysis of an artificial zinc finger epigenetic modulator: widespread binding but limited regulation. Nucleic Acids Res. 42, 10856–10868 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  85. 85

    Wu, X. et al. Genome-wide binding of the CRISPR endonuclease Cas9 in mammalian cells. Nat. Biotechnol. 32, 670–676 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  86. 86

    Kuscu, C., Arslan, S., Singh, R., Thorpe, J. & Adli, M. Genome-wide analysis reveals characteristics of off-target sites bound by the Cas9 endonuclease. Nat. Biotechnol. 32, 677–683 (2014).

    CAS  Google Scholar 

  87. 87

    O'Geen, H., Henry, I.M., Bhakta, M.S., Meckler, J.F. & Segal, D.J. A genome-wide analysis of Cas9 binding specificity using ChIP-seq and targeted sequence capture. Nucleic Acids Res. 43, 3389–3404 (2015).

    PubMed  PubMed Central  Google Scholar 

  88. 88

    Duan, J. et al. Genome-wide identification of CRISPR/Cas9 off-targets in human genome. Cell Res. 24, 1009–1012 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  89. 89

    Tan, S. et al. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA 100, 11997–12002 (2003).

    CAS  Google Scholar 

  90. 90

    Bolukbasi, M.F., Gupta, A. & Wolfe, S.A. Creating and evaluating accurate CRISPR-Cas9 scalpels for genomic surgery. Nat. Methods 13, 41–50 (2016).

    CAS  Google Scholar 

  91. 91

    Hsu, P.D. et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 31, 827–832 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  92. 92

    Fu, Y., Sander, J.D., Reyon, D., Cascio, V.M. & Joung, J.K. Improving CRISPR-Cas nuclease specificity using truncated guide RNAs. Nat. Biotechnol. 32, 279–284 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  93. 93

    Zetsche, B., Volz, S.E. & Zhang, F. A split-Cas9 architecture for inducible genome editing and transcription modulation. Nat. Biotechnol. 33, 139–142 (2015).

    CAS  Google Scholar 

  94. 94

    Aach, J., Mali, P. & Church, G.M. CasFinder: flexible algorithm for identifying specific Cas9 targets in genomes. bioRxiv doi:10.1101/005074 (12 May 2014).

  95. 95

    Heigwer, F., Kerr, G. & Boutros, M. E-CRISP: fast CRISPR target site identification. Nat. Methods 11, 122–123 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. 96

    Doench, J.G. et al. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32, 1262–1267 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. 97

    Singh, R., Kuscu, C., Quinlan, A., Qi, Y. & Adli, M. Cas9-chromatin binding information enables more accurate CRISPR off-target prediction. Nucleic Acids Res. 43, e118 (2015).

    PubMed  PubMed Central  Google Scholar 

  98. 98

    Zalatan, J.G. et al. Engineering complex synthetic transcriptional programs with CRISPR RNA scaffolds. Cell 160, 339–350 (2015). The authors achieved simultaneous activation and repression with the CRISPR-Cas9 system by incorporating effector protein recruitment into the gRNA scaffold.

    CAS  Google Scholar 

  99. 99

    Mercer, A.C., Gaj, T., Sirk, S.J., Lamb, B.M. & Barbas, C.F. III Regulation of endogenous human gene expression by ligand-inducible TALE transcription factors. ACS Synth. Biol. 3, 723–730 (2014).

    CAS  PubMed  Google Scholar 

  100. 100

    Nissim, L., Perli, S.D., Fridkin, A., Perez-Pinera, P. & Lu, T.K. Multiplexed and programmable regulation of gene networks with an integrated RNA and CRISPR/Cas toolkit in human cells. Mol. Cell 54, 698–710 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  101. 101

    Tsai, S.Q. et al. Dimeric CRISPR RNA-guided FokI nucleases for highly specific genome editing. Nat. Biotechnol. 32, 569–576 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  102. 102

    Kennedy, M.J. et al. Rapid blue-light-mediated induction of protein interactions in living cells. Nat. Methods 7, 973–975 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  103. 103

    Polstein, L.R. & Gersbach, C.A. Light-inducible spatiotemporal control of gene activation by customizable zinc finger transcription factors. J. Am. Chem. Soc. 134, 16480–16483 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  104. 104

    Nihongaki, Y., Yamamoto, S., Kawano, F., Suzuki, H. & Sato, M. CRISPR-Cas9-based photoactivatable transcription system. Chem. Biol. 22, 169–174 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  105. 105

    Polstein, L.R. & Gersbach, C.A. A light-inducible CRISPR-Cas9 system for control of endogenous gene activation. Nat. Chem. Biol. 11, 198–200 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  106. 106

    Hilton, I.B. & Gersbach, C.A. Enabling functional genomics with genome engineering. Genome Res. 25, 1442–1455 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  107. 107

    Crocker, J. & Stern, D.L. TALE-mediated modulation of transcriptional enhancers in vivo. Nat. Methods 10, 762–767 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  108. 108

    Deng, W. et al. Reactivation of developmentally silenced globin genes by forced chromatin looping. Cell 158, 849–860 (2014). The authors remodeled the three-dimensional chromatin interactions between regulatory elements and gene products at the globin locus using a targeted ZFP to activate previously silenced globin genes.

    CAS  PubMed  PubMed Central  Google Scholar 

  109. 109

    Phillips, J.E. & Corces, V.G. CTCF: master weaver of the genome. Cell 137, 1194–1211 (2009).

    PubMed  PubMed Central  Google Scholar 

  110. 110

    Khalil, A.S. et al. A synthetic biology framework for programming eukaryotic transcription functions. Cell 150, 647–658 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  111. 111

    Kiani, S. et al. CRISPR transcriptional repression devices and layered circuits in mammalian cells. Nat. Methods 11, 723–726 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  112. 112

    Lienert, F. et al. Two- and three-input TALE-based AND logic computation in embryonic stem cells. Nucleic Acids Res. 41, 9967–9975 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  113. 113

    Keung, A.J., Bashor, C.J., Kiriakov, S., Collins, J.J. & Khalil, A.S. Using targeted chromatin regulators to engineer combinatorial and spatial transcriptional regulation. Cell 158, 110–120 (2014). These authors performed an impressively comprehensive evaluation of gene regulation by 223 various chromatin regulators fused to ZFPs to control synthetic genes in yeast.

    CAS  PubMed  PubMed Central  Google Scholar 

  114. 114

    Esvelt, K.M. et al. Orthogonal Cas9 proteins for RNA-guided gene regulation and editing. Nat. Methods 10, 1116–1121 (2013). This paper demonstrates the ability to multiplex orthogonal Cas9 species to target different effector domains to distinct loci.

    CAS  PubMed  PubMed Central  Google Scholar 

  115. 115

    Ran, F.A. et al. In vivo genome editing using Staphylococcus aureus Cas9. Nature 520, 186–191 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. 116

    Hou, Z. et al. Efficient genome engineering in human pluripotent stem cells using Cas9 from Neisseria meningitidis. Proc. Natl. Acad. Sci. USA 110, 15644–15649 (2013).

    CAS  Google Scholar 

  117. 117

    Kleinstiver, B.P. et al. Engineered CRISPR-Cas9 nucleases with altered PAM specificities. Nature 523, 481–485 (2015).

    PubMed  PubMed Central  Google Scholar 

  118. 118

    Briner, A.E. et al. Guide RNA functional modules direct Cas9 activity and orthogonality. Mol. Cell 56, 333–339 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  119. 119

    Shechner, D.M., Hacisuleyman, E., Younger, S.T. & Rinn, J.L. Multiplexable, locus-specific targeting of long RNAs with CRISPR-Display. Nat. Methods 12, 664–670 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  120. 120

    Dahlman, J.E. et al. Orthogonal gene knockout and activation with a catalytically active Cas9 nuclease. Nat. Biotechnol. 33, 1159–1161 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. 121

    Kiani, S. et al. Cas9 gRNA engineering for genome editing, activation and repression. Nat. Methods 12, 1051–1054 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  122. 122

    Josephs, E.A. et al. Structure and specificity of the RNA-guided endonuclease Cas9 during DNA interrogation, target binding and cleavage. Nucleic Acids Res. 43, 8924–8941 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  123. 123

    Blancafort, P., Magnenat, L. & Barbas, C.F. III Scanning the human genome with combinatorial transcription factor libraries. Nat. Biotechnol. 21, 269–274 (2003).

    CAS  Google Scholar 

  124. 124

    Park, K.S. et al. Phenotypic alteration of eukaryotic cells using randomized libraries of artificial transcription factors. Nat. Biotechnol. 21, 1208–1214 (2003).

    CAS  Google Scholar 

  125. 125

    Graf, T. & Enver, T. Forcing cells to change lineages. Nature 462, 587–594 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  126. 126

    Vierbuchen, T. & Wernig, M. Direct lineage conversions: unnatural but useful? Nat. Biotechnol. 29, 892–907 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  127. 127

    Hanna, J. et al. Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462, 595–601 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  128. 128

    Wapinski, O.L. et al. Hierarchical mechanisms for direct reprogramming of fibroblasts to neurons. Cell 155, 621–635 (2013).

    CAS  PubMed  Google Scholar 

  129. 129

    Kim, K. et al. Epigenetic memory in induced pluripotent stem cells. Nature 467, 285–290 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  130. 130

    Lister, R. et al. Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells. Nature 471, 68–73 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  131. 131

    Kelly, T.K., De Carvalho, D.D. & Jones, P.A. Epigenetic modifications as therapeutic targets. Nat. Biotechnol. 28, 1069–1078 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  132. 132

    Gräslund, T., Li, X., Magnenat, L., Popkov, M. & Barbas, C.F. III Exploring strategies for the design of artificial transcription factors: targeting sites proximal to known regulatory regions for the induction of gamma-globin expression and the treatment of sickle cell disease. J. Biol. Chem. 280, 3707–3714 (2005).

    Google Scholar 

  133. 133

    Wilber, A. et al. A zinc-finger transcriptional activator designed to interact with the gamma-globin gene promoters enhances fetal hemoglobin production in primary human adult erythroblasts. Blood 115, 3033–3041 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  134. 134

    Laganiere, J. et al. An engineered zinc finger protein activator of the endogenous glial cell line-derived neurotrophic factor gene provides functional neuroprotection in a rat model of Parkinson's disease. J. Neurosci. 30, 16469–16474 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  135. 135

    Rebar, E.J. et al. Induction of angiogenesis in a mouse model using engineered transcription factors. Nat. Med. 8, 1427–1432 (2002). The authors show that ZFP-based activators can stimulate angiogenesis and robust neovascular formation in vivo , demonstrating a potential therapeutic benefit of endogenous activation compared to exogenous overexpression of target genes.

    CAS  Google Scholar 

  136. 136

    Dai, Q. et al. Engineered zinc finger-activating vascular endothelial growth factor transcription factor plasmid DNA induces therapeutic angiogenesis in rabbits with hindlimb ischemia. Circulation 110, 2467–2475 (2004).

    CAS  Google Scholar 

  137. 137

    Yokoi, K. et al. Gene transfer of an engineered zinc finger protein enhances the anti-angiogenic defense system. Mol. Ther. 15, 1917–1923 (2007).

    CAS  Google Scholar 

  138. 138

    Chapdelaine, P., Coulombe, Z., Chikh, A., Gerard, C. & Tremblay, J.P. A potential new therapeutic approach for Friedreich ataxia: induction of frataxin expression with TALE proteins. Mol. Ther. Nucleic Acids 2, e119 (2013).

    PubMed  PubMed Central  Google Scholar 

  139. 139

    Magnenat, L., Schwimmer, L.J. & Barbas, C.F. III Drug-inducible and simultaneous regulation of endogenous genes by single-chain nuclear receptor-based zinc-finger transcription factor gene switches. Gene Ther. 15, 1223–1232 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  140. 140

    Himeda, C.L., Jones, T.I. & Jones, P.L. CRISPR/dCas9-mediated transcriptional inhibition ameliorates the epigenetic dysregulation at D4Z4 and represses DUX4-fl in FSH muscular dystrophy. Mol. Ther. doi:10.1038/mt.2015.200 (3 November 2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  141. 141

    Jakovcevski, M. & Akbarian, S. Epigenetic mechanisms in neurological disease. Nat. Med. 18, 1194–1204 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  142. 142

    Fierz, B. & Muir, T.W. Chromatin as an expansive canvas for chemical biology. Nat. Chem. Biol. 8, 417–427 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  143. 143

    Azad, N., Zahnow, C.A., Rudin, C.M. & Baylin, S.B. The future of epigenetic therapy in solid tumours—lessons from the past. Nat. Rev. Clin. Oncol. 10, 256–266 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  144. 144

    Kay, M.A. State-of-the-art gene-based therapies: the road ahead. Nat. Rev. Genet. 12, 316–328 (2011).

    CAS  PubMed  Google Scholar 

  145. 145

    Burnett, J.C. & Rossi, J.J. RNA-based therapeutics: current progress and future prospects. Chem. Biol. 19, 60–71 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  146. 146

    Hendel, A. et al. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33, 985–989 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  147. 147

    Bernstein, B.E. et al. Genomic maps and comparative analysis of histone modifications in human and mouse. Cell 120, 169–181 (2005).

    CAS  Google Scholar 

  148. 148

    Wang, Z. et al. Genome-wide mapping of HATs and HDACs reveals distinct functions in active and inactive genes. Cell 138, 1019–1031 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  149. 149

    Wang, F., Marshall, C.B. & Ikura, M. Transcriptional/epigenetic regulator CBP/p300 in tumorigenesis: structural and functional versatility in target recognition. Cell. Mol. Life Sci. 70, 3989–4008 (2013).

    CAS  Google Scholar 

  150. 150

    Dou, Y. et al. Regulation of MLL1 H3K4 methyltransferase activity by its core components. Nat. Struct. Mol. Biol. 13, 713–719 (2006).

    CAS  PubMed  Google Scholar 

  151. 151

    Shi, Y. et al. Histone demethylation mediated by the nuclear amine oxidase homolog LSD1. Cell 119, 941–953 (2004).

    CAS  Google Scholar 

  152. 152

    Agger, K. et al. UTX and JMJD3 are histone H3K27 demethylases involved in HOX gene regulation and development. Nature 449, 731–734 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  153. 153

    Bernstein, B.E. et al. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125, 315–326 (2006).

    CAS  Google Scholar 

  154. 154

    Di Croce, L. & Helin, K. Transcriptional regulation by Polycomb group proteins. Nat. Struct. Mol. Biol. 20, 1147–1155 (2013).

    CAS  PubMed  Google Scholar 

  155. 155

    Cao, R. et al. Role of histone H3 lysine 27 methylation in Polycomb-group silencing. Science 298, 1039–1043 (2002).

    CAS  PubMed  Google Scholar 

  156. 156

    Peters, A.H. et al. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12, 1577–1589 (2003).

    CAS  Google Scholar 

  157. 157

    Rea, S. et al. Regulation of chromatin structure by site-specific histone H3 methyltransferases. Nature 406, 593–599 (2000).

    CAS  PubMed  Google Scholar 

  158. 158

    Tachibana, M. et al. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev. 16, 1779–1791 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  159. 159

    Baubec, T. et al. Genomic profiling of DNA methyltransferases reveals a role for DNMT3B in genic methylation. Nature 520, 243–247 (2015).

    CAS  Google Scholar 

  160. 160

    Chen, T., Ueda, Y., Dodge, J.E., Wang, Z. & Li, E. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23, 5594–5605 (2003).

    CAS  PubMed  PubMed Central  Google Scholar 

  161. 161

    Liao, J. et al. Targeted disruption of DNMT1, DNMT3A and DNMT3B in human embryonic stem cells. Nat. Genet. 47, 469–478 (2015).

    CAS  PubMed  PubMed Central  Google Scholar 

  162. 162

    Tahiliani, M. et al. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324, 930–935 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  163. 163

    He, Y.F. et al. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333, 1303–1307 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  164. 164

    Bernstein, D.L., Le Lay, J.E., Ruano, E.G. & Kaestner, K.H. TALE-mediated epigenetic suppression of CDKN2A increases replication in human fibroblasts. J. Clin. Invest. 125, 1998–2006 (2015).

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by US National Institutes of Health (NIH) grants R01DA036865, U01HG007900, R21AR065956 and P30AR066527; an NIH Director's New Innovator Award (DP2OD008586); and a US National Science Foundation (NSF) Faculty Early Career Development (CAREER) award (CBET-1151035) to C.A.G. P.I.T. was supported by an NSF Graduate Research Fellowship and an American Heart Association Mid-Atlantic Affiliate Predoctoral Fellowship. J.B.B. was supported by an NIH biotechnology training grant (T32GM008555).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Charles A Gersbach.

Ethics declarations

Competing interests

The authors are inventors on patent applications related to genome engineering (WO 2014/197748). C.A.G. is a scientific advisor to Editas Medicine, a company engaged in therapeutic development of genome engineering technologies.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Thakore, P., Black, J., Hilton, I. et al. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat Methods 13, 127–137 (2016). https://doi.org/10.1038/nmeth.3733

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing