Bioconductor is an open-source, open-development software project for the analysis and comprehension of high-throughput data in genomics and molecular biology. The project aims to enable interdisciplinary research, collaboration and rapid development of scientific software. Based on the statistical programming language R, Bioconductor comprises 934 interoperable packages contributed by a large, diverse community of scientists. Packages cover a range of bioinformatic and statistical applications. They undergo formal initial review and continuous automated testing. We present an overview for prospective users and contributors.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 5, R80 (2004).

  2. 2.

    R Development Core Team. R: A Language and Environment for Statistical Computing (R Foundation for Statistical Computing, 2014).

  3. 3.

    , , & Bioconductor Case Studies (Springer, 2008).

  4. 4.

    et al. Software for computing and annotating genomic ranges. PLoS Comput. Biol. 9, e1003118 (2013).

  5. 5.

    The ENCODE Project Consortium. An integrated encyclopedia of DNA elements in the human genome. Nature 489, 57–74 (2012).

  6. 6.

    et al. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16, 27–37 (2014).

  7. 7.

    et al. OpenCyto: an open source infrastructure for scalable, robust, reproducible, and automated, end-to-end flow cytometry data analysis. PLoS Comput. Biol. 10, e1003806 (2014).

  8. 8.

    , , & Epiviz: interactive visual analytics for functional genomics data. Nat. Methods 11, 938–940 (2014).

  9. 9.

    Reproducible research: a bioinformatics case study. Stat. Appl. Genet. Mol. Biol. 4, Article 2 (2005).

  10. 10.

    & Differential expression analysis for sequence count data. Genome Biol. 11, R106 (2010).

  11. 11.

    , , , & Mapping genetic interactions in human cancer cells with RNAi and multiparametric phenotyping. Nat. Methods 10, 427–431 (2013).

  12. 12.

    et al. Comparative meta-analysis of prognostic gene signatures for late-stage ovarian cancer. J. Natl. Cancer Inst. 106, dju049 (2014).

  13. 13.

    et al. Risk prediction for late-stage ovarian cancer by meta-analysis of 1525 patient samples. J. Natl. Cancer Inst. 106, dju048 (2014).

  14. 14.

    & Waste not, want not: why rarefying microbiome data is inadmissible. PLoS Comput. Biol. 10, e1003531 (2014).

  15. 15.

    , , & The Galaxy Team. Galaxy: a comprehensive approach for supporting accessible, reproducible, and transparent computational research in the life sciences. Genome Biol. 11, R86 (2010).

  16. 16.

    & IPython: a system for interactive scientific computing. Comput. Sci. Eng. 9, 21–29 (2007).

  17. 17.

    Anonymous. Credit for code. Nat. Genet. 46, 1 (2014).

  18. 18.

    et al. The anatomy of successful computational biology software. Nat. Biotechnol. 31, 894–897 (2013).

  19. 19.

    et al. The Sequence Alignment/Map format and SAMtools. Bioinformatics 25, 2078–2079 (2009).

  20. 20.

    & Scalable genomics with R and Bioconductor. Stat. Sci. 29, 214–226 (2014).

  21. 21.

    et al. Minimum information about a microarray experiment (MIAME) - toward standards for microarray data. Nat. Genet. 29, 365–371 (2001).

  22. 22.

    et al. Identification of regulatory networks in HSCs and their immediate progeny via integrated proteome, transcriptome, and DNA methylome analysis. Cell Stem Cell 15, 507–522 (2014).

  23. 23.

    , & Detecting differential usage of exons from RNA-seq data. Genome Res. 22, 2008–2017 (2012).

  24. 24.

    et al. VariantAnnotation: a Bioconductor package for exploration and annotation of genetic variants. Bioinformatics 30, 2076 (2014).

Download references


We thank all contributors to the Bioconductor and R projects. Bioconductor is supported by the National Human Genome Research Institute of the US National Institutes of Health (U41HG004059 to M.M.). Additional support is from the US National Science Foundation (1247813 to M.M.) and the European Commission FP7 project RADIANT (to W.H.). A. Bruce provided graphics support for Figure 2.

Author information


  1. European Molecular Biology Laboratory, Heidelberg, Germany.

    • Wolfgang Huber
    • , Simon Anders
    • , Andrzej K Oleś
    •  & Alejandro Reyes
  2. Channing Division of Network Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA.

    • Vincent J Carey
  3. Harvard School of Public Health, Boston, Massachusetts, USA.

    • Vincent J Carey
    • , Rafael A Irizarry
    •  & Michael I Love
  4. Genentech, South San Francisco, California, USA.

    • Robert Gentleman
    •  & Michael Lawrence
  5. Computational Biology Program, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

    • Marc Carlson
    • , Valerie Obenchain
    • , Hervé Pagès
    • , Paul Shannon
    • , Dan Tenenbaum
    •  & Martin Morgan
  6. Department of Medical Genetics, School of Medical Sciences, State University of Campinas, Campinas, Brazil.

    • Benilton S Carvalho
  7. Center for Bioinformatics and Computational Biology, University of Maryland, College Park, Maryland, USA.

    • Hector Corrada Bravo
  8. Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland, USA.

    • Sean Davis
  9. Department of Biochemistry, University of Cambridge, Cambridge, UK.

    • Laurent Gatto
  10. Institute for Integrative Genome Biology, University of California, Riverside, Riverside, California, USA.

    • Thomas Girke
  11. Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA.

    • Raphael Gottardo
  12. Novartis Institutes for Biomedical Research, Basel, Switzerland.

    • Florian Hahne
  13. McKusick-Nathans Institute of Genetic Medicine, Johns Hopkins University, Baltimore, Maryland, USA.

    • Kasper D Hansen
  14. Department of Biostatistics, Johns Hopkins University, Baltimore, Maryland, USA.

    • Kasper D Hansen
  15. Dana-Farber Cancer Institute, Boston, Massachusetts, USA.

    • Rafael A Irizarry
    •  & Michael I Love
  16. Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA.

    • James MacDonald
  17. Walter and Eliza Hall Institute of Medical Research, Parkville, Victoria, Australia.

    • Gordon K Smyth
  18. Department of Mathematics and Statistics, University of Melbourne, Parkville, Victoria, Australia.

    • Gordon K Smyth
  19. School of Urban Public Health at Hunter College, City University of New York, New York, New York, USA.

    • Levi Waldron


  1. Search for Wolfgang Huber in:

  2. Search for Vincent J Carey in:

  3. Search for Robert Gentleman in:

  4. Search for Simon Anders in:

  5. Search for Marc Carlson in:

  6. Search for Benilton S Carvalho in:

  7. Search for Hector Corrada Bravo in:

  8. Search for Sean Davis in:

  9. Search for Laurent Gatto in:

  10. Search for Thomas Girke in:

  11. Search for Raphael Gottardo in:

  12. Search for Florian Hahne in:

  13. Search for Kasper D Hansen in:

  14. Search for Rafael A Irizarry in:

  15. Search for Michael Lawrence in:

  16. Search for Michael I Love in:

  17. Search for James MacDonald in:

  18. Search for Valerie Obenchain in:

  19. Search for Andrzej K Oleś in:

  20. Search for Hervé Pagès in:

  21. Search for Alejandro Reyes in:

  22. Search for Paul Shannon in:

  23. Search for Gordon K Smyth in:

  24. Search for Dan Tenenbaum in:

  25. Search for Levi Waldron in:

  26. Search for Martin Morgan in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Wolfgang Huber.

About this article

Publication history






Further reading