Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension

Abstract

Single-molecule measurements of DNA twist and extension have been used to reveal physical properties of the double helix and to characterize structural dynamics and mechanochemistry in nucleoprotein complexes. However, the spatiotemporal resolution of twist measurements has been limited by the use of angular probes with high rotational drag, which prevents detection of short-lived intermediates or small angular steps. We introduce gold rotor bead tracking (AuRBT), which yields >100× improvement in time resolution over previous techniques. AuRBT employs gold nanoparticles as bright low-drag rotational and extensional probes, which are monitored by instrumentation that combines magnetic tweezers with objective-side evanescent darkfield microscopy. Our analysis of high-speed structural dynamics of DNA gyrase using AuRBT revealed an unanticipated transient intermediate. AuRBT also enables direct measurements of DNA torque with >50× shorter integration times than previous techniques; we demonstrated high-resolution torque spectroscopy by mapping the conformational landscape of a Z-forming DNA sequence.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: AuRBT design and data collection.
Figure 2: Angular resolution of AuRBT.
Figure 3: High-resolution measurement of twist-stretch coupling.
Figure 4: High-resolution analysis of gyrase dynamics at 1 mM ATP.
Figure 5: AuRBT torque spectroscopy.

Similar content being viewed by others

References

  1. Moffitt, J.R., Chemla, Y.R., Smith, S.B. & Bustamante, C. Recent advances in optical tweezers. Annu. Rev. Biochem. 77, 205–228 (2008).

    CAS  PubMed  Google Scholar 

  2. Neuman, K.C. & Nagy, A. Single-molecule force spectroscopy: optical tweezers, magnetic tweezers and atomic force microscopy. Nat. Methods 5, 491–505 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bryant, Z., Oberstrass, F.C. & Basu, A. Recent developments in single-molecule DNA mechanics. Curr. Opin. Struct. Biol. 22, 304–312 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Vologodskii, A. Determining protein-induced DNA bending in force-extension experiments: theoretical analysis. Biophys. J. 96, 3591–3599 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Nollmann, M., Crisona, N.J. & Arimondo, P.B. Thirty years of Escherichia coli DNA gyrase: from in vivo function to single-molecule mechanism. Biochimie 89, 490–499 (2007).

    PubMed  Google Scholar 

  6. Basu, A., Schoeffler, A.J., Berger, J.M. & Bryant, Z. ATP binding controls distinct structural transitions of Escherichia coli DNA gyrase in complex with DNA. Nat. Struct. Mol. Biol. 19, 538–546 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Gore, J. et al. Mechanochemical analysis of DNA gyrase using rotor bead tracking. Nature 439, 100–104 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Killian, J.L., Li, M., Sheinin, M.Y. & Wang, M.D. Recent advances in single molecule studies of nucleosomes. Curr. Opin. Struct. Biol. 22, 80–87 (2012).

    CAS  PubMed  Google Scholar 

  9. Revyakin, A., Liu, C., Ebright, R.H. & Strick, T.R. Abortive initiation and productive initiation by RNA polymerase involve DNA scrunching. Science 314, 1139–1143 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Lee, M., Lipfert, J., Sanchez, H., Wyman, C. & Dekker, N.H. Structural and torsional properties of the RAD51-dsDNA nucleoprotein filament. Nucleic Acids Res. 41, 7023–7030 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Arata, H. et al. Direct observation of twisting steps during Rad51 polymerization on DNA. Proc. Natl. Acad. Sci. USA 106, 19239–19244 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Lipfert, J., Wiggin, M., Kerssemakers, J.W., Pedaci, F. & Dekker, N.H. Freely orbiting magnetic tweezers to directly monitor changes in the twist of nucleic acids. Nat. Commun. 2, 439 (2011).

    PubMed  Google Scholar 

  13. Schoeffler, A.J. & Berger, J.M. DNA topoisomerases: harnessing and constraining energy to govern chromosome topology. Q. Rev. Biophys. 41, 41–101 (2008).

    CAS  PubMed  Google Scholar 

  14. Harada, Y. et al. Direct observation of DNA rotation during transcription by Escherichia coli RNA polymerase. Nature 409, 113–115 (2001).

    CAS  PubMed  Google Scholar 

  15. Abbondanzieri, E.A., Greenleaf, W.J., Shaevitz, J.W., Landick, R. & Block, S.M. Direct observation of base-pair stepping by RNA polymerase. Nature 438, 460–465 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Li, G., Levitus, M., Bustamante, C. & Widom, J. Rapid spontaneous accessibility of nucleosomal DNA. Nat. Struct. Mol. Biol. 12, 46–53 (2005).

    CAS  PubMed  Google Scholar 

  17. Mosconi, F., Allemand, J.F. & Croquette, V. Soft magnetic tweezers: a proof of principle. Rev. Sci. Instrum. 82, 034302 (2011).

    PubMed  Google Scholar 

  18. Forth, S., Sheinin, M.Y., Inman, J. & Wang, M.D. Torque measurement at the single-molecule level. Annual Review of Biophysics 42, 583–604 (2013).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Bryant, Z. et al. Structural transitions and elasticity from torque measurements on DNA. Nature 424, 338–341 (2003).

    CAS  PubMed  Google Scholar 

  20. Janssen, X.J. et al. Electromagnetic torque tweezers: a versatile approach for measurement of single-molecule twist and torque. Nano Lett. 12, 3634–3639 (2012).

    CAS  PubMed  Google Scholar 

  21. Lipfert, J., Kerssemakers, J.W., Jager, T. & Dekker, N.H. Magnetic torque tweezers: measuring torsional stiffness in DNA and RecA-DNA filaments. Nat. Methods 7, 977–980 (2010).

    CAS  PubMed  Google Scholar 

  22. Oberstrass, F.C., Fernandes, L.E. & Bryant, Z. Torque measurements reveal sequence-specific cooperative transitions in supercoiled DNA. Proc. Natl. Acad. Sci. USA 109, 6106–6111 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Forth, S. et al. Abrupt buckling transition observed during the plectoneme formation of individual DNA molecules. Phys. Rev. Lett. 100, 148301 (2008).

    PubMed  PubMed Central  Google Scholar 

  24. Celedon, A. et al. Magnetic tweezers measurement of single molecule torque. Nano Lett. 9, 1720–1725 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Oberstrass, F.C., Fernandes, L.E., Lebel, P. & Bryant, Z. Torque Spectroscopy of DNA: Base-Pair Stability, Boundary Effects, Backbending, and Breathing Dynamics. Phys. Rev. Lett. 110, 178103 (2013).

    PubMed  PubMed Central  Google Scholar 

  26. Patel, S.S. & Donmez, I. Mechanisms of helicases. J. Biol. Chem. 281, 18265–18268 (2006).

    CAS  PubMed  Google Scholar 

  27. Deufel, C., Forth, S., Simmons, C.R., Dejgosha, S. & Wang, M.D. Nanofabricated quartz cylinders for angular trapping: DNA supercoiling torque detection. Nat. Methods 4, 223–225 (2007).

    CAS  PubMed  Google Scholar 

  28. Zocchi, G. Proteins unfold in steps. Proc. Natl. Acad. Sci. USA 94, 10647–10651 (1997).

    CAS  PubMed  PubMed Central  Google Scholar 

  29. Liu, R., Garcia-Manyes, S., Sarkar, A., Badilla, C.L. & Fernandez, J.M. Mechanical characterization of protein L in the low-force regime by electromagnetic tweezers/evanescent nanometry. Biophys. J. 96, 3810–3821 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Yasuda, R., Noji, H., Yoshida, M., Kinosita, K. Jr. & Itoh, H. Resolution of distinct rotational substeps by submillisecond kinetic analysis of F1-ATPase. Nature 410, 898–904 (2001).

    CAS  PubMed  Google Scholar 

  31. Dunn, A.R. & Spudich, J.A. Dynamics of the unbound head during myosin V processive translocation. Nat. Struct. Mol. Biol. 14, 246–248 (2007).

    CAS  PubMed  Google Scholar 

  32. Lindner, M. et al. Force-free measurements of the conformations of DNA molecules tethered to a wall. Phys. Rev. E 83, 011916 (2011).

    Google Scholar 

  33. Ueno, H. et al. Simple dark-field microscopy with nanometer spatial precision and microsecond temporal resolution. Biophys. J. 98, 2014–2023 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Dunn, A.R., Chuan, P., Bryant, Z. & Spudich, J.A. Contribution of the myosin VI tail domain to processive stepping and intramolecular tension sensing. Proc. Natl. Acad. Sci. USA 107, 7746–7750 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Braslavsky, I. et al. Objective-type dark-field illumination for scattering from microbeads. Appl. Opt. 40, 5650–5657 (2001).

    CAS  PubMed  Google Scholar 

  36. Mashanov, G.I., Tacon, D., Knight, A.E., Peckham, M. & Molloy, J.E. Visualizing single molecules inside living cells using total internal reflection fluorescence microscopy. Methods 29, 142–152 (2003).

    CAS  PubMed  Google Scholar 

  37. Friedman, L.J., Chung, J. & Gelles, J. Viewing dynamic assembly of molecular complexes by multi-wavelength single-molecule fluorescence. Biophys. J. 91, 1023–1031 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Wong, W.P. & Halvorsen, K. The effect of integration time on fluctuation measurements: calibrating an optical trap in the presence of motion blur. Opt. Express 14, 12517–12531 (2006).

    PubMed  Google Scholar 

  39. Yasuda, R., Miyata, H. & Kinosita, K. Jr. Direct measurement of the torsional rigidity of single actin filaments. J. Mol. Biol. 263, 227–236 (1996).

    CAS  PubMed  Google Scholar 

  40. Gore, J. et al. DNA overwinds when stretched. Nature 442, 836–839 (2006).

    CAS  PubMed  Google Scholar 

  41. Lionnet, T., Joubaud, S., Lavery, R., Bensimon, D. & Croquette, V. Wringing out DNA. Phys. Rev. Lett. 96, 178102 (2006).

    PubMed  Google Scholar 

  42. Sheinin, M.Y. & Wang, M.D. Twist-stretch coupling and phase transition during DNA supercoiling. Phys. Chem. Chem. Phys. 11, 4800–4803 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Heddle, J.G., Mitelheiser, S., Maxwell, A. & Thomson, N.H. Nucleotide binding to DNA gyrase causes loss of DNA wrap. J. Mol. Biol. 337, 597–610 (2004).

    CAS  PubMed  Google Scholar 

  44. Gutierrez-Medina, B., Andreasson, J.O., Greenleaf, W.J., Laporta, A. & Block, S.M. An optical apparatus for rotation and trapping. Methods Enzymol. 475, 377–404 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  45. La Porta, A. & Wang, M.D. Optical torque wrench: angular trapping, rotation, and torque detection of quartz microparticles. Phys. Rev. Lett. 92, 190801 (2004).

    PubMed  Google Scholar 

  46. Kauert, D.J., Kurth, T., Liedl, T. & Seidel, R. Direct mechanical measurements reveal the material properties of three-dimensional DNA origami. Nano Lett. 11, 5558–5563 (2011).

    CAS  PubMed  Google Scholar 

  47. Pfitzner, E. et al. Rigid DNA beams for high-resolution single-molecule mechanics. Angew. Chem. Int. Edn Engl. 52, 7766–7771 (2013).

    CAS  Google Scholar 

  48. Comstock, M.J., Ha, T. & Chemla, Y.R. Ultrahigh-resolution optical trap with single-fluorophore sensitivity. Nat. Methods 8, 335–340 (2011).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Huang, B., Jones, S.A., Brandenburg, B. & Zhuang, X. Whole-cell 3D STORM reveals interactions between cellular structures with nanometer-scale resolution. Nat. Methods 5, 1047–1052 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Lipfert, J., Hao, X. & Dekker, N.H. Quantitative modeling and optimization of magnetic tweezers. Biophys. J. 96, 5040–5049 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Tretter, E.M. & Berger, J.M. Mechanisms for defining supercoiling set point of DNA gyrase orthologs: I. A nonconserved acidic C-terminal tail modulates Escherichia coli gyrase activity. J. Biol. Chem. 287, 18636–18644 (2012).

    CAS  PubMed  PubMed Central  Google Scholar 

  52. Rice, S. Mathematical analysis of random noise. Bell Syst. Tech. J. 24, 46–156 (1945).

    Google Scholar 

  53. Strick, T.R., Allemand, J.F., Bensimon, D., Bensimon, A. & Croquette, V. The elasticity of a single supercoiled DNA molecule. Science 271, 1835–1837 (1996).

    CAS  PubMed  Google Scholar 

  54. te Velthuis, A.J., Kerssemakers, J.W., Lipfert, J. & Dekker, N.H. Quantitative guidelines for force calibration through spectral analysis of magnetic tweezers data. Biophys. J. 99, 1292–1302 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Gosse, C. & Croquette, V. Magnetic tweezers: micromanipulation and force measurement at the molecular level. Biophys. J. 82, 3314–3329 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  56. Klaue, D. & Seidel, R. Torsional stiffness of single superparamagnetic microspheres in an external magnetic field. Phys. Rev. Lett. 102, 028302 (2009).

    PubMed  Google Scholar 

Download references

Acknowledgements

We thank J.M. Berger and members of the Bryant group for many useful discussions and comments on the manuscript, and A. Bekshaev, P. Ruijgrok and M. Dijk for providing Matlab code used for computing Mie scattering parameters and optical forces. This work was supported by a Stanford Interdisciplinary Graduate Fellowship and the Natural Sciences and Engineering Research Council of Canada (award NSERC PGS-D3) to P.L., by a Stanford Bio-X graduate fellowship to A.B., by a Pew Scholars Award and US National Institutes of Health grants OD004690 and GM106159 to Z.B., and by a Swiss National Science Foundation Fellowship to F.C.O.

Author information

Authors and Affiliations

Authors

Contributions

P.L. designed and built instrumentation, wrote data acquisition code, performed experiments and analyzed data. A.B. aided in developing and interpreting DNA gyrase experiments, collaborated on data acquisition code and performed calibration experiments to establish evanescent nanometry procedures. F.C.O. synthesized molecules for torque spectroscopy and aided in static torque assay development. E.M.T. purified and characterized E. coli GyrA and GyrB subunits for gyrase experiments. Z.B. conceived and supervised the project. P.L. and Z.B. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Zev Bryant.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–11, Supplementary Tables 1–3 and Supplementary Notes 1–3 (PDF 9057 kb)

High-speed darkfield imaging and angle tracking.

An 80-nm gold rotor bead was attached above a 420 bp torsionally constrained DNA segment (Supplementary Table 3 “bottom constrained” tether), held under 26 pN of tension and imaged at 6.3 kHz. A total of 150 ms of raw images (pixel size, 104.5 nm) are shown alongside cumulative plots of the fitted x-y positions and the corresponding calculated angle. The elapsed time in milliseconds is displayed above the image panel. x-y markers are color-coded in time to distinguish current positions from accumulated data. (MOV 2863 kb)

Comparison of predicted and observed torque-measurement distributions.

The binned data in Figure 5d are compared with the model prediction in Figure 5e by displaying torque measurement distributions –log(P(τ)) for successive values of imposed twist θ. Predicted distributions were calculated (equations S9–S12) using parameters obtained from fitting the mean torque 〈τ〉(θ) alone. The distribution is unimodal at low twist values that favor B-DNA. At intermediate twist values, the distribution becomes bimodal as formation of a Z-DNA domain becomes thermodynamically accessible; the B-Z coexistence regime is characterized by a broad torque distribution, which narrows asymmetrically as the B-Z transformation approaches completion. (MOV 5140 kb)

Supplementary Software

AuRBT data acquisition in Matlab. These files may be used to implement the data acquisition and PSF fitting procedure described in Online Methods. “Initialize.m” initializes hardware, and “Acquire.m” performs acquisition and x-y feedback. “gsolve2d.c” should be compiled as a Matlab executable, which is called by “Acquire.m” for Gaussian fitting. (ZIP 11 kb)

Source data

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lebel, P., Basu, A., Oberstrass, F. et al. Gold rotor bead tracking for high-speed measurements of DNA twist, torque and extension. Nat Methods 11, 456–462 (2014). https://doi.org/10.1038/nmeth.2854

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2854

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing