Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity

An Erratum to this article was published on 30 January 2014

This article has been updated

Abstract

Natural proteins often rely on the disulfide bond to covalently link side chains. Here we genetically introduce a new type of covalent bond into proteins by enabling an unnatural amino acid to react with a proximal cysteine. We demonstrate the utility of this bond for enabling irreversible binding between an affibody and its protein substrate, capturing peptide-protein interactions in mammalian cells, and improving the photon output of fluorescent proteins.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Covalent bond formation through proximity-enhanced bioreactivity.
Figure 2: Covalent bond formation at the interface of the affibody and the Z protein resulted in irreversible binding.
Figure 3: Covalent bond formation between Ucn-1 and CRF-R1 site-specifically captured ligand-receptor interaction in mammalian cells.

Similar content being viewed by others

Accession codes

Accessions

Protein Data Bank

Change history

  • 21 November 2013

    In the version of this article initially published, in Figure 2e, lanes 6 and 8 should have been labeled "Fact," not "Ffact." In the legend for this figure, the sentence "N3 indicates cysteine..." should have read "C3 indicates cysteine...." The errors have been corrected in the HTML and PDF versions of the article.

References

  1. Sevier, C.S. & Kaiser, C.A. Nat. Rev. Mol. Cell Biol. 3, 836–847 (2002).

    Article  CAS  Google Scholar 

  2. Liu, H. & May, K. MAbs 4, 17–23 (2012).

    Article  CAS  Google Scholar 

  3. Berkmen, M. Protein Expr. Purif. 82, 240–251 (2012).

    Article  CAS  Google Scholar 

  4. Kang, H.J. & Baker, E.N. Trends Biochem. Sci. 36, 229–237 (2011).

    Article  CAS  Google Scholar 

  5. Liu, C.C. & Schultz, P.G. Annu. Rev. Biochem. 79, 413–444 (2010).

    Article  CAS  Google Scholar 

  6. Li, X. & Liu, D.R. Angew. Chem. Int. Edn. Engl. 43, 4848–4870 (2004).

    Article  CAS  Google Scholar 

  7. Drahl, C., Cravatt, B.F. & Sorensen, E.J. Angew. Chem. Int. Edn. Engl. 44, 5788–5809 (2005).

    Article  CAS  Google Scholar 

  8. Chmura, A.J., Orton, M.S. & Meares, C.F. Proc. Natl. Acad. Sci. USA 98, 8480–8484 (2001).

    Article  CAS  Google Scholar 

  9. Cravatt, B.F., Wright, A.T. & Kozarich, J.W. Annu. Rev. Biochem. 77, 383–414 (2008).

    Article  CAS  Google Scholar 

  10. Ahmed, N.K. et al. Biochem. Pharmacol. 44, 1201–1207 (1992).

    Article  CAS  Google Scholar 

  11. Cohen, M.S., Zhang, C., Shokat, K.M. & Taunton, J. Science 308, 1318–1321 (2005).

    Article  CAS  Google Scholar 

  12. Bennett, B.D. et al. Nat. Chem. Biol. 5, 593–599 (2009).

    Article  CAS  Google Scholar 

  13. Högbom, M., Eklund, M., Nygren, P.A. & Nordlund, P. Proc. Natl. Acad. Sci. USA 100, 3191–3196 (2003).

    Article  Google Scholar 

  14. Holm, L., Moody, P. & Howarth, M. J. Biol. Chem. 284, 32906–32913 (2009).

    Article  CAS  Google Scholar 

  15. Wang, L., Zhang, Z., Brock, A. & Schultz, P.G. Proc. Natl. Acad. Sci. USA 100, 56–61 (2003).

    Article  CAS  Google Scholar 

  16. Perrin, M.H. & Vale, W.W. Ann. NY Acad. Sci. 885, 312–328 (1999).

    Article  CAS  Google Scholar 

  17. Shu, X.K., Wang, L., Colip, L., Kallio, K. & Remington, S.J. Protein Sci. 18, 460–466 (2009).

    Article  CAS  Google Scholar 

  18. Shcherbo, D. et al. Biochem. J. 418, 567–574 (2009).

    Article  CAS  Google Scholar 

  19. Zhang, Z., Wang, L., Brock, A. & Schultz, P.G. Angew. Chem. Int. Edn. 41, 2840–2842 (2002).

    Article  CAS  Google Scholar 

  20. Alken, M. et al. Biochem. J. 390, 455–464 (2005).

    Article  CAS  Google Scholar 

  21. Lacey, V.K. et al. Angew. Chem. Int. Edn. Engl. 50, 8692–8696 (2011).

    Article  CAS  Google Scholar 

  22. Wang, L., Jackson, W.C., Steinbach, P.A. & Tsien, R.Y. Proc. Natl. Acad. Sci. USA 101, 16745–16749 (2004).

    Article  CAS  Google Scholar 

  23. Coin, I., Perrin, M.H., Vale, W.W. & Wang, L. Angew. Chem. Int. Edn. Engl. 50, 8077–8081 (2011).

    Article  CAS  Google Scholar 

  24. Takimoto, J.K., Adams, K.L., Xiang, Z. & Wang, L. Mol. Biosyst. 5, 931–934 (2009).

    Article  CAS  Google Scholar 

  25. Wang, W. et al. Nat. Neurosci. 10, 1063–1072 (2007).

    Article  CAS  Google Scholar 

  26. Takimoto, J.K., Dellas, N., Noel, J.P. & Wang, L. ACS Chem. Biol. 6, 733–743 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank J. Xu for help with the NMR measurements, M. Beyermann (Leibniz Institute of Molecular Pharmacology, Germany) for synthesizing the Cys-Ucn-1 analogs, and the Vale laboratory (Salk Institute) for the polyclonal rabbit anti-urocortin. H.R. was partially funded by the Nomis Postdoctoral Fellowship. I.C. was supported by a Marie Curie fellowship from the European Commission within the 7th framework program. L.W. acknowledges support from the California Institute for Regenerative Medicine (RN1-00577-1) and US National Institutes of Health (1DP2OD004744-01, P30CA014195).

Author information

Authors and Affiliations

Authors

Contributions

Z.X. designed and synthesized the Uaa, tested the reaction, analyzed the data and wrote the manuscript; H.R. performed affibody-Z expression and complex formation, expressed and purified fluorescent proteins, measured quantum yields, analyzed the data and wrote the method section; Y.S.H. and H.C. performed single-molecule imaging, analyzed the data and wrote the single-molecule section. I.C. performed the CRF-R1 experiments and analyzed the data. J.W. characterized Uaa incorporation by MS, analyzed the data and wrote the MS section; L.W. conceived and directed the project, analyzed the data and wrote the manuscript.

Corresponding author

Correspondence to Lei Wang.

Ethics declarations

Competing interests

J.W. is an employee of Jadebio, Inc., which is a contract research organization providing mass spectrometry–based protein analysis.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–4, Supplementary Table 1, Supplementary Note, Supplementary Results and Supplementary Methods (PDF 3679 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Xiang, Z., Ren, H., Hu, Y. et al. Adding an unnatural covalent bond to proteins through proximity-enhanced bioreactivity. Nat Methods 10, 885–888 (2013). https://doi.org/10.1038/nmeth.2595

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2595

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing