Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Brief Communication
  • Published:

Quantitative optical trapping on single organelles in cell extract

Abstract

We have developed an optical trapping method to precisely measure the force generated by motor proteins on single organelles of unknown size in cell extract. This approach, termed VMatch, permits the functional interrogation of native motor complexes. We apply VMatch to measure the force, number and activity of kinesin-1 on motile lipid droplets isolated from the liver of normally fed and food-deprived rats.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The VMatch method for quantitative optical trapping of cellular organelles.
Figure 2: Motility and force measurement on lipid droplets extracted from rat liver.

Similar content being viewed by others

References

  1. Vale, R.D. Cell 112, 467–480 (2003).

    Article  CAS  Google Scholar 

  2. Neuman, K.C. & Block, S.M. Rev. Sci. Instrum. 75, 2787–2809 (2004).

    Article  CAS  Google Scholar 

  3. Rice, S.E., Purcell, T.J. & Spudich, J.A. Methods Enzymol. 361, 112–133 (2003).

    Article  CAS  Google Scholar 

  4. Welte, M.A. et al. Cell 92, 547–557 (1998).

    Article  CAS  Google Scholar 

  5. Shubeita, G.T. et al. Cell 135, 1098–1107 (2008).

    Article  CAS  Google Scholar 

  6. Sims, P.A. & Xie, X.S. ChemPhysChem 10, 1511–1516 (2009).

    Article  CAS  Google Scholar 

  7. Leidel, C. et al. Biophys. J. 103, 492–500 (2012).

    Article  CAS  Google Scholar 

  8. Soppina, V. et al. Proc. Natl. Acad. Sci. USA 106, 19381–19386 (2009).

    Article  CAS  Google Scholar 

  9. Rogers, S.L. et al. Proc. Natl. Acad. Sci. USA 94, 3720–3725 (1997).

    Article  CAS  Google Scholar 

  10. Vershinin, M. et al. Proc. Natl. Acad. Sci. USA 104, 87–92 (2007).

    Article  CAS  Google Scholar 

  11. Gibbons, G.F. et al. Biochem. Soc. Trans. 32, 59–64 (2004).

    Article  CAS  Google Scholar 

  12. Welte, M.A. Biochem. Soc. Trans. 37, 991–996 (2009).

    Article  CAS  Google Scholar 

  13. Takahashi, K. et al. J. Lipid Res. 51, 2571–2580 (2010).

    Article  CAS  Google Scholar 

  14. Vermeulen, K.C. et al. Rev. Sci. Instrum. 77, 13704–13709 (2006).

    Article  Google Scholar 

  15. Tolic-Nørrelykke, S.F. et al. Rev. Sci. Instrum. 77, 103101–103111 (2006).

    Article  Google Scholar 

  16. Staforelli, J.P. et al. Opt. Express 18, 3322–3331 (2010).

    Article  CAS  Google Scholar 

  17. Soppina, V., Arpan, R. & Mallik, R. Biotechniques 46, 543–549 (2009).

    Article  CAS  Google Scholar 

  18. Carter, B.C., Shubeita, G.T. & Gross, S.P. Phys. Biol. 2, 60–72 (2005).

    Article  Google Scholar 

  19. Mallik, R. et al. Nature 427, 649–659 (2004).

    Article  CAS  Google Scholar 

  20. Mallik, R. et al. Curr. Biol. 15, 2075–2085 (2005).

    Article  CAS  Google Scholar 

  21. Brasaemle, D.L. & Wolins, N.E. Curr. Protoc. Cell Biol. 56, 3.15 (2006).

    Google Scholar 

  22. Ontko, J.A., Perrin, L.W. & Horne, L.S. J. Lipid Res. 27, 1097–1103 (1986).

    CAS  PubMed  Google Scholar 

  23. Brasaemle, D.L. et al. J. Biol. Chem. 279, 46835–46842 (2004).

    Article  CAS  Google Scholar 

  24. Wang, H. et al. Mol. Biol. Cell 21, 1991–2000 (2010).

    Article  CAS  Google Scholar 

  25. Castoldi, M. & Popov, A.V. Protein Expr. Purif. 32, 83–88 (2003).

    Article  CAS  Google Scholar 

  26. Schroer, T.A. & Sheetz, M.P. J. Cell Biol. 115, 1309–1318 (1991).

    Article  CAS  Google Scholar 

  27. Kaan, H.Y., Hackney, D.D. & Kozielski, F. Science 333, 883–885 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank A. Rai and R. Jha for discussions and help and K. Verhey (University of Michigan) for kinesin-1 antibody. R.M. acknowledges funding through an International Senior Research Fellowship from the Wellcome Trust, UK (grant WT079214MA).

Author information

Authors and Affiliations

Authors

Contributions

R.M. designed the experiments. P.B., A.R., P.R. and R.M. performed the experiments. R.M., P.B. and A.R. analyzed the data and wrote the paper.

Corresponding author

Correspondence to Roop Mallik.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–5 and Supplementary Notes 1–3 (PDF 928 kb)

The microtubule is out of focus and therefore not visible clearly.

The lipid droplet moves towards microtubule plus end. The microtubule minus end was labeled using avidin coated magnetic beads (not visible in this field of view). Movie runs in real-time. Field of view is 10 microns horizontally. (AVI 884 kb)

The polarity label on minus-end of microtubule is not visible in this field of view.

Movie runs in real-time. Field of view is 5 microns horizontally. (AVI 2002 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barak, P., Rai, A., Rai, P. et al. Quantitative optical trapping on single organelles in cell extract. Nat Methods 10, 68–70 (2013). https://doi.org/10.1038/nmeth.2287

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2287

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing