Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals

Abstract

Membrane proteins are largely underrepresented among available atomic-resolution structures. The use of detergents in protein purification procedures hinders the formation of well-ordered crystals for X-ray crystallography and leads to slower molecular tumbling, impeding the application of solution-state NMR. Solid-state magic-angle spinning NMR spectroscopy is an emerging method for membrane-protein structural biology that can overcome these technical problems. Here we present the solid-state NMR structure of the transmembrane domain of the Yersinia enterocolitica adhesin A (YadA). The sample was derived from crystallization trials that yielded only poorly diffracting microcrystals. We solved the structure using a single, uniformly 13C- and 15N-labeled sample. In addition, solid-state NMR allowed us to acquire information on the flexibility and mobility of parts of the structure, which, in combination with evolutionary conservation information, presents new insights into the autotransport mechanism of YadA.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Long-range interactions defining tertiary and quaternary structure observed in solid-state NMR spectra of YadA-M.
Figure 2: Solid-state MAS NMR structure of YadA-M.
Figure 3: Evolutionary analysis.
Figure 4: Model of the autotransport process.

Similar content being viewed by others

Accession codes

Primary accessions

Protein Data Bank

Referenced accessions

Protein Data Bank

References

  1. Franks, W.T. et al. Magic-angle spinning solid-state NMR spectroscopy of the beta1 immunoglobulin binding domain of protein G (GB1): 15N and 13C chemical shift assignments and conformational analysis. J. Am. Chem. Soc. 127, 12291–12305 (2005).

    Article  CAS  PubMed  Google Scholar 

  2. Jehle, S. et al. Solid-state NMR and SAXS studies provide a structural basis for the activation of alphaB-crystallin oligomers. Nat. Struct. Mol. Biol. 17, 1037–1042 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Wasmer, C. et al. Amyloid fibrils of the HET-s(218–289) prion form a beta solenoid with a triangular hydrophobic core. Science 319, 1523–1526 (2008).

    Article  CAS  PubMed  Google Scholar 

  4. Hong, M., Zhang, Y. & Hu, F. Membrane protein structure and dynamics from NMR spectroscopy. Annu. Rev. Phys. Chem. 63, 1–24 (2012).

    Article  CAS  PubMed  Google Scholar 

  5. McDermott, A. Structure and dynamics of membrane proteins by magic angle spinning solid-state NMR. Annu. Rev. Biophys. 38, 385–403 (2009).

    Article  CAS  PubMed  Google Scholar 

  6. Judge, P.J. & Watts, A. Recent contributions from solid-state NMR to the understanding of membrane protein structure and function. Curr. Opin. Chem. Biol. 15, 690–695 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Ketchem, R.R., Hu, W. & Cross, T.A. High-resolution conformation of gramicidin A in a lipid bilayer by solid-state NMR. Science 261, 1457–1460 (1993).

    Article  CAS  PubMed  Google Scholar 

  8. Das, B.B. et al. Structure determination of a membrane protein in proteoliposomes. J. Am. Chem. Soc. 134, 2047–2056 (2012).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Linke, D., Riess, T., Autenrieth, I.B., Lupas, A. & Kempf, V.A. Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol. 14, 264–270 (2006).

    Article  CAS  PubMed  Google Scholar 

  10. Nummelin, H. et al. The Yersinia adhesin YadA collagen-binding domain structure is a novel left-handed parallel beta-roll. EMBO J. 23, 701–711 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Grosskinsky, U. et al. A conserved glycine residue of trimeric autotransporter domains plays a key role in Yersinia adhesin A autotransport. J. Bacteriol. 189, 9011–9019 (2007).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Lehr, U. et al. C-terminal amino acid residues of the trimeric autotransporter adhesin YadA of Yersinia enterocolitica are decisive for its recognition and assembly by BamA. Mol. Microbiol. 78, 932–946 (2010).

    Article  CAS  PubMed  Google Scholar 

  13. Roggenkamp, A. et al. Molecular analysis of transport and oligomerization of the Yersinia enterocolitica adhesin YadA. J. Bacteriol. 185, 3735–3744 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Wollmann, P., Zeth, K., Lupas, A.N. & Linke, D. Purification of the YadA membrane anchor for secondary structure analysis and crystallization. Int. J. Biol. Macromol. 39, 3–9 (2006).

    Article  CAS  PubMed  Google Scholar 

  15. Shahid, S.A., Markovic, S., Linke, D. & van Rossum, B.-J. Assignment and secondary structure of the YadA membrane protein by solid-state MAS NMR. Sci. Rep. doi: 10.1038/srep00803 (in the press).

  16. Rieping, W., Habeck, M. & Nilges, M. Inferential structure determination. Science 309, 303–306 (2005).

    Article  CAS  PubMed  Google Scholar 

  17. Bayrhuber, M. et al. Structure of the human voltage-dependent anion channel. Proc. Natl. Acad. Sci. USA 105, 15370–15375 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuszewski, J. et al. Completely automated, highly error-tolerant macromolecular structure determination from multidimensional nuclear Overhauser enhancement spectra and chemical shift assignments. J. Am. Chem. Soc. 126, 6258–6273 (2004).

    Article  CAS  PubMed  Google Scholar 

  19. Meng, G., Surana, N.K., St Geme, J.W. III. & Waksman, G. Structure of the outer membrane translocator domain of the Haemophilus influenzae Hia trimeric autotransporter. EMBO J. 25, 2297–2304 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Alvarez, B.H. et al. A transition from strong right-handed to canonical left-handed supercoiling in a conserved coiled-coil segment of trimeric autotransporter adhesins. J. Struct. Biol. 170, 236–245 (2010).

    Article  CAS  PubMed  Google Scholar 

  21. Ieva, R., Skillman, K.M. & Bernstein, H.D. Incorporation of a polypeptide segment into the beta-domain pore during the assembly of a bacterial autotransporter. Mol. Microbiol. 67, 188–201 (2008).

    Article  CAS  PubMed  Google Scholar 

  22. Leo, J.C., Grin, I. & Linke, D. Type V secretion: mechanism(s) of autotransport through the bacterial outer membrane. Phil. Trans. R. Soc. Lond. B 367, 1088–1101 (2012).

    Article  CAS  Google Scholar 

  23. Phan, G. et al. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474, 49–53 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Junker, M., Besingi, R.N. & Clark, P.L. Vectorial transport and folding of an autotransporter virulence protein during outer membrane secretion. Mol. Microbiol. 71, 1323–1332 (2009).

    Article  CAS  PubMed  Google Scholar 

  25. Peterson, J.H., Tian, P., Ieva, R., Dautin, N. & Bernstein, H.D. Secretion of a bacterial virulence factor is driven by the folding of a C-terminal segment. Proc. Natl. Acad. Sci. USA 107, 17739–17744 (2010).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lupas, A.N. & Gruber, M. The structure of alpha-helical coiled coils. Adv. Protein Chem. 70, 37–78 (2005).

    Article  CAS  PubMed  Google Scholar 

  27. Leo, J.C. et al. The structure of E. coli IgG-binding protein D suggests a general model for bending and binding in trimeric autotransporter adhesins. Structure 19, 1021–1030 (2011).

    Article  CAS  PubMed  Google Scholar 

  28. Tang, M. et al. High-resolution membrane protein structure by joint calculations with solid-state NMR and X-ray experimental data. J. Biomol. NMR 51, 227–233 (2011).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Arnold, T. & Linke, D. Phase separation in the isolation and purification of membrane proteins. Biotechniques 43, 427–440 (2007).

    Article  CAS  PubMed  Google Scholar 

  30. Schaefer, J. & Stejskal, E.O. Carbon-13 nuclear magnetic resonance of polymers spinning at the magic angle. J. Am. Chem. Soc. 98, 1031–1032 (1976).

    Article  CAS  Google Scholar 

  31. Sinha, N. et al. SPINAL modulated decoupling in high field double- and triple-resonance solid-state NMR experiments on stationary samples. J. Magn. Reson. 177, 197–202 (2005).

    Article  CAS  PubMed  Google Scholar 

  32. Morcombe, C.R., Gaponenko, V., Byrd, R.A. & Zilm, K.W. Diluting abundant spins by isotope edited radio frequency field assisted diffusion. J. Am. Chem. Soc. 126, 7196–7197 (2004).

    Article  CAS  PubMed  Google Scholar 

  33. Takegoshi, K., Yano, T., Takeda, K. & Terao, T. Indirect high-resolution observation of 14N NMR in rotating solids. J. Am. Chem. Soc. 123, 10786–10787 (2001).

    Article  CAS  PubMed  Google Scholar 

  34. Szeverenyi, N.M., Sullivan, M.J. & Maciel, G.E. Observation of spin exchange by two-dimensional Fourier transform 13C cross polarization-magic-angle spinning. J. Magn. Reson. 47, 462–475 (1982).

    CAS  Google Scholar 

  35. Lange, A. et al. A concept for rapid protein-structure determination by solid-state NMR spectroscopy. Angew. Chem. Int. Edn Engl. 44, 2089–2092 (2005).

    Article  CAS  Google Scholar 

  36. De Paëpe, G., Lewandowski, J.R., Loquet, A., Böckmann, A. & Griffin, R.G. Proton assisted recoupling and protein structure determination. J. Chem. Phys. 129, 245101 (2008).

    Article  PubMed  PubMed Central  Google Scholar 

  37. Hing, A.W., Vega, S. & Schaefer, J. Transferred-echo double-resonance NMR. J. Magn. Reson. 96, 205–209 (1992).

    CAS  Google Scholar 

  38. Jaroniec, C.P., Filip, C. & Griffin, R.G. 3D TEDOR NMR experiments for the simultaneous measurement of multiple carbon-nitrogen distances in uniformly 13C,15N-labeled solids. J. Am. Chem. Soc. 124, 10728–10742 (2002).

    Article  CAS  PubMed  Google Scholar 

  39. Gullion, T. & Schaefer, J. Rotational-echo double-resonance NMR. J. Magn. Reson. 81, 196–200 (1989).

    CAS  Google Scholar 

  40. Wu, X.L., Burns, S.T. & Zilm, K.W. Spectral editing in CPMAS NMR. Generating subspectra based on proton multiplicities. J. Magn. Reson. A 111, 29–36 (1994).

    Article  CAS  Google Scholar 

  41. Opella, S.J., Frey, M.H. & Cross, T.A. Detection of individual carbon resonances in solid proteins. J. Am. Chem. Soc. 101, 5856–5857 (1979).

    Article  CAS  Google Scholar 

  42. Opella, S.J. & Frey, M.H. Selection of nonprotonated carbon resonances in solid-state nuclear magnetic resonance. J. Am. Chem. Soc. 101, 5854–5856 (1979).

    Article  CAS  Google Scholar 

  43. Shen, Y., Delaglio, F., Cornilescu, G. & Bax, A. TALOS+: a hybrid method for predicting protein backbone torsion angles from NMR chemical shifts. J. Biomol. NMR 44, 213–223 (2009).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Berjanskii, M.V. & Wishart, D.S. A simple method to predict protein flexibility using secondary chemical shifts. J. Am. Chem. Soc. 127, 14970–14971 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Marsh, J.A., Singh, V.K., Jia, Z. & Forman-Kay, J.D. Sensitivity of secondary structure propensities to sequence differences between alpha- and gamma-synuclein: implications for fibrillation. Protein Sci. 15, 2795–2804 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Shen, Y. & Bax, A. Protein backbone chemical shifts predicted from searching a database for torsion angle and sequence homology. J. Biomol. NMR 38, 289–302 (2007).

    Article  CAS  PubMed  Google Scholar 

  47. Bardiaux, B., van Rossum, B.J., Nilges, M. & Oschkinat, H. Efficient modeling of symmetric protein aggregates from NMR data. Angew. Chem. Int. Edn Engl. 51, 6916–6919 (2012).

    Article  CAS  Google Scholar 

  48. Szczesny, P. & Lupas, A. Domain annotation of trimeric autotransporter adhesins–daTAA. Bioinformatics 24, 1251–1256 (2008).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Altschul, S.F. et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Biegert, A., Mayer, C., Remmert, M., Söding, J. & Lupas, A.N. The MPI Bioinformatics Toolkit for protein sequence analysis. Nucleic Acids Res. 34, W335–W339 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Edgar, R.C. MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res. 32, 1792–1797 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by contract research 'Forschungsprogramm Methoden für die Lebenswissenschaften' of the Baden-Württemberg Stiftung to M.H. and D.L.; additional funding was from the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 261863 (Bio-NMR) to B.B. and W.T.F., the Deutsche Forschungsgemeinschaft (HA 5918/1-1 to M.H., SFB 766 to D.L. and SFB 740 to B.-J.v.R. and W.T.F.), and institutional funds of the Leibniz Society and the Max Planck Society. The authors thank H. Oschkinat and A. Lupas for continuing support and H. Schwarz for his electron microscopy work.

Author information

Authors and Affiliations

Authors

Contributions

L.K. and D.L. conceived of the project; B.-J.v.R. and D.L. designed the experiments; S.A.S., B.-J.v.R., W.T.F, L.K. and D.L. performed the experiments; S.A.S., M.H. and B.B. performed the structure calculations; and S.A.S., B.-J.v.R., M.H, B.B. and D.L. interpreted the data and wrote the paper.

Corresponding authors

Correspondence to Michael Habeck, Barth-Jan van Rossum or Dirk Linke.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1 and 2, Supplementary Table 1 and Supplementary Notes 1–5 (PDF 4653 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shahid, S., Bardiaux, B., Franks, W. et al. Membrane-protein structure determination by solid-state NMR spectroscopy of microcrystals. Nat Methods 9, 1212–1217 (2012). https://doi.org/10.1038/nmeth.2248

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.2248

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing