Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Visualization of omics data for systems biology

Abstract

High-throughput studies of biological systems are rapidly accumulating a wealth of 'omics'-scale data. Visualization is a key aspect of both the analysis and understanding of these data, and users now have many visualization methods and tools to choose from. The challenge is to create clear, meaningful and integrated visualizations that give biological insight, without being overwhelmed by the intrinsic complexity of the data. In this review, we discuss how visualization tools are being used to help interpret protein interaction, gene expression and metabolic profile data, and we highlight emerging new directions.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Visualization of protein interaction networks.
Figure 2: Omics data overlaid onto biological networks.
Figure 3: Visualization tools for multivariate omics data
Figure 4: Visualization of metabolic pathways and profile data.

References

  1. Michal, G. Biochemical Pathways: An Atlas of Biochemistry and Molecular Biology (Wiley, New York, 1998).

    Google Scholar 

  2. Nishizuka, Y. The role of protein kinase C in cell surface signal transduction and tumour promotion. Nature 308, 693–698 (1984).

    CAS  PubMed  Google Scholar 

  3. Levine, M. & Davidson, E.H. Gene regulatory networks for development. Proc. Natl. Acad. Sci. USA 102, 4936–4942 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Bader, G.D., Cary, M.P. & Sander, C. Pathguide: a pathway resource list. Nucleic Acids Res. 34 Database issue, D504–D506 (2006).

    CAS  PubMed  Google Scholar 

  5. Saraiya, P., North, C. & Duca, K. Visualizing biological pathways: requirements analysis, systems evaluation, and research agenda. Inf. Vis. 4, 191–205 (2005). This paper represents one of the first attempts to critically evaluate the requirements for visualization software used in biology.

    Google Scholar 

  6. Suderman, M. & Hallett, M. Tools for visually exploring biological networks. Bioinformatics 23, 2651–2659 (2007).

    CAS  PubMed  Google Scholar 

  7. Pavlopoulos, G.A.G., Wegener, A.L.A. & Schneider, R.R. A survey of visualization tools for biological network analysis. BioData Min. 1, 12 (2008).

    PubMed  PubMed Central  Google Scholar 

  8. Charbonnier, S., Gallego, O. & Gavin, A.C. The social network of a cell: recent advances in interactome mapping. Biotechnol. Annu. Rev. 14, 1–28 (2008).

    CAS  PubMed  Google Scholar 

  9. Yu, H. et al. High-quality binary protein interaction map of the yeast interactome network. Science 322, 104–110 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Gavin, A.C. et al. Proteome survey reveals modularity of the yeast cell machinery. Nature 440, 631–636 (2006).

    CAS  PubMed  Google Scholar 

  11. Mathivanan, S. et al. An evaluation of human protein-protein interaction data in the public domain. BMC Bioinformatics 7 (suppl. 5), S19 (2006).

    PubMed  PubMed Central  Google Scholar 

  12. Ma'ayan, A. Network integration and graph analysis in mammalian molecular systems biology. IET Syst. Biol. 2, 206–221 (2008).

    CAS  PubMed  Google Scholar 

  13. Salwinski, L. et al. The Database of Interacting Proteins: 2004 update. Nucleic Acids Res. 32 (database issue), D449–D451 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Prasad, T.S., Kandasamy, K. & Pandey, A. Human Protein Reference Database and Human Proteinpedia as discovery tools for systems biology. Methods Mol. Biol. 577, 67–79 (2009).

    CAS  PubMed  Google Scholar 

  15. Aranda, B. et al. The IntAct molecular interaction database in 2010. Nucleic Acids Res. 38 (database issue), D525–D531 (2010).

    CAS  PubMed  Google Scholar 

  16. von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002).

    CAS  PubMed  Google Scholar 

  17. Fruchterman, T.M.J. & Reingold, E.M. Graph drawing by force-directed placement. Software Pract. Exper. 21, 1129–1164 (1991).

    Google Scholar 

  18. Bader, G.D. & Hogue, C.W. An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4, 2 (2003).

    PubMed  PubMed Central  Google Scholar 

  19. Kuhner, S. et al. Proteome organization in a genome-reduced bacterium. Science 326, 1235–1240 (2009).

    PubMed  Google Scholar 

  20. Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003). This paper describes the core Cytoscape software, which has become one of the most popular tools to visualize and analyze biological networks. This is partly due to the modular design of the software that allows developers to create plug-ins to address virtually any network analysis problem.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Junker, B.H., Klukas, C. & Schreiber, F. VANTED: a system for advanced data analysis and visualization in the context of biological networks. BMC Bioinformatics 7, 109 (2006).

    PubMed  PubMed Central  Google Scholar 

  22. Hu, Z. et al. VisANT 3.5: multi-scale network visualization, analysis and inference based on the gene ontology. Nucleic Acids Res. 37 (web server issue), W115–W121 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  23. McGuffin, M.J. & Jurisica, I. Interaction techniques for selecting and manipulating subgraphs in network visualizations. IEEE Trans. Vis. Comput. Graph. 15, 937–944 (2009).

    PubMed  Google Scholar 

  24. Prinz, S. et al. Control of yeast filamentous-form growth by modules in an integrated molecular network. Genome Res. 14, 380–390 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hu, Z. et al. Towards zoomable multidimensional maps of the cell. Nat. Biotechnol. 25, 547–554 (2007).

    CAS  PubMed  Google Scholar 

  26. Barsky, A., Munzner, T., Gardy, J. & Kincaid, R. Cerebral: visualizing multiple experimental conditions on a graph with biological context. IEEE Trans. Vis. Comput. Graph. 14, 1253–1260 (2008).

    PubMed  Google Scholar 

  27. Genc, B. and Dogrusoz, U. A layout algorithm for signaling pathways. Inf. Sci. 176, 135–149 (2006)

    Google Scholar 

  28. de Lichtenberg, U., Jensen, L.J., Brunak, S. & Bork, P. Dynamic complex formation during the yeast cell cycle. Science 307, 724–727 (2005).

    CAS  PubMed  Google Scholar 

  29. Kanehisa, M. et al. KEGG for linking genomes to life and the environment. Nucleic Acids Res. 36 (database issue), D480–D484 (2008).

    CAS  PubMed  Google Scholar 

  30. Matthews, L. et al. Reactome knowledgebase of human biological pathways and processes. Nucleic Acids Res. 37 (database issue), D619–D622 (2009).

    CAS  PubMed  Google Scholar 

  31. Kuhn, M. et al. STITCH 2: an interaction network database for small molecules and proteins. Nucleic Acids Res. 38 (database issue), D552–D556 (2010).

    CAS  PubMed  Google Scholar 

  32. Quackenbush, J. Computational analysis of microarray data. Nat. Rev. Genet. 2, 418–427 (2001).

    CAS  PubMed  Google Scholar 

  33. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10, 57–63 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Bantscheff, M., Schirle, M., Sweetman, G., Rick, J. & Kuster, B. Quantitative mass spectrometry in proteomics: a critical review. Anal. Bioanal. Chem. 389, 1017–1031 (2007).

    CAS  PubMed  Google Scholar 

  35. Gstaiger, M. & Aebersold, R. Applying mass spectrometry-based proteomics to genetics, genomics and network biology. Nat. Rev. Genet. 10, 617–627 (2009).

    CAS  PubMed  Google Scholar 

  36. Westenberg, M.A., van Hijum, S.A.F.T., Kuipers, O.P. & Roerdink, J.B.T.M. Visualizing genome expression and regulatory network dynamics in genomic and metabolic context. Comput. Graph. Forum 27, 887–894 (2008).

    Google Scholar 

  37. Freeman, T.C. et al. Construction, visualisation, and clustering of transcription networks from microarray expression data. PLOS Comput. Biol. 3, e206 (2007).

    PubMed Central  Google Scholar 

  38. Saraiya, P., Lee, P. & North, C. in IEEE Symp. Information Visualization (InfoVis 2005) 225–232 (2005).

    Google Scholar 

  39. Tufte, E.R. The Visual Display of Quantitative Information 2nd edn. (Graphics Press, Cheshire, Connecticut, USA, 2001).

    Google Scholar 

  40. Salomonis, N. et al. GenMAPP 2: new features and resources for pathway analysis. BMC Bioinformatics 8, 217 (2007).

    PubMed  PubMed Central  Google Scholar 

  41. Neuweger, H. et al. Visualizing post genomics data-sets on customized pathway maps by ProMeTra – aeration-dependent gene expression and metabolism of Corynebacterium glutamicum as an example. BMC Syst. Biol. 3, 82 (2009).

    PubMed  PubMed Central  Google Scholar 

  42. Kincaid, R., Kuchinsky, A. & Creech, M. VistaClara: an expression browser plug-in for Cytoscape. Bioinformatics 24, 2112–2114 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Lee, H.K., Hsu, A.K., Sajdak, J., Qin, J. & Pavlidis, P. Coexpression analysis of human genes across many microarray data sets. Genome Res. 14, 1085–1094 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  44. Dunn, W.B. & Ellis, D.I. Metabolomics: current analytical platforms and methodologies. TrAC Trends Anal. Chem. 24, 285–294 (2005).

    CAS  Google Scholar 

  45. Scholz, M. & Fiehn, O. Setup X – a public study design database for metabolomic projects. Pac. Symp. Biocomput. 169–180, doi: 10.1142/9789812772435_0017 (2007).

  46. Thimm, O. et al. MAPMAN: a user-driven tool to display genomics data sets onto diagrams of metabolic pathways and other biological processes. Plant J. 37, 914–939 (2004).

    CAS  PubMed  Google Scholar 

  47. Paley, S.M. & Karp, P.D. The Pathway Tools cellular overview diagram and omics viewer. Nucleic Acids Res. 34, 3771–3778 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  48. Tokimatsu, T. et al. KaPPA-view: a web-based analysis tool for integration of transcript and metabolite data on plant metabolic pathway maps. Plant Physiol. 138, 1289–1300 (2005).

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Mlecnik, B. et al. PathwayExplorer: web service for visualizing high-throughput expression data on biological pathways. Nucleic Acids Res. 33 (web server issue), W633–W637 (2005)

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Caspi, R. et al. The MetaCyc database of metabolic pathways and enzymes and the BioCyc collection of pathway/genome databases. Nucleic Acids Res. 36 (database issue), D623–D631 (2008).

    CAS  PubMed  Google Scholar 

  51. Funahashi, A. et al. CellDesigner 3.5: a versatile modeling tool for biochemical networks. Proc. IEEE 96, 1254–1265 (2008).

    Google Scholar 

  52. Sauro, H.M. et al. Next generation simulation tools: the Systems Biology Workbench and BioSPICE integration. OMICS 7, 355–372 (2003).

    CAS  PubMed  Google Scholar 

  53. Demir, E. et al. PATIKA: an integrated visual environment for collaborative construction and analysis of cellular pathways. Bioinformatics 18, 996–1003 (2002).

    CAS  PubMed  Google Scholar 

  54. Schreiber, F., Dwyer, T., Marriott, K. & Wybrow, M. A generic algorithm for layout of biological networks. BMC Bioinformatics 10, 375 (2009).

    PubMed  PubMed Central  Google Scholar 

  55. Thomas, J.J. & Cook, K.A. Illuminating the Path: The Research and Development Agenda for Visual Analytics. (National Visual Analytics Center & IEEE, Richland, Washington, USA, 2005).

    Google Scholar 

  56. Saraiya, P., North, C. & Duca, K. An Insight-based methodology for evaluating bioinformatics visualizations. IEEE Trans. Vis. Comput. Graph. 11, 443–456 (2005).

    PubMed  Google Scholar 

  57. Dwyer, T., Koren, Y. & Marriott, K. IPSEP-COLA: an incremental procedure for separation constraint layout of graphs. IEEE Trans. Vis. Comput. Graph. 12, 821–828 (2006).

    PubMed  Google Scholar 

  58. Dwyer, T. et al. Exploration of networks using overview+detail with constraint-based cooperative layout. IEEE Trans. Vis. Comput. Graph. 14, 1293–1300 (2008).

    PubMed  Google Scholar 

  59. Viégas, F.B., Wattenberg, M., van Ham, F., Kriss, J. & McKeon, M. ManyEyes: a site for visualization at internet scale. IEEE Trans. Vis. Comput. Graph. 13, 1121–1128 (2007).

    PubMed  Google Scholar 

  60. Heer, J., Viégas, F.B. & Wattenberg, M. Voyagers and voyeurs: supporting asynchronous collaborative information visualization. in Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (CHI'07) 1029–1038 (ACM, New York, 2007).

    Google Scholar 

  61. Heer, J. & Agrawala, M. Design considerations for collaborative visual analytics. Inf. Vis. 7, 49–62 (2008).

    Google Scholar 

  62. Pico, A.R. et al. WikiPathways: pathway editing for the people. PLoS Biol. 6, e184 (2008).

    PubMed  PubMed Central  Google Scholar 

  63. Pavlopoulos, G.A. et al. Arena3D: visualization of biological networks in 3D. BMC Syst. Biol. 2, 104 (2008).

    PubMed  PubMed Central  Google Scholar 

  64. Ball, R. & North, C. Realizing embodied interaction for visual analytics through large displays. Comput. Graph. 31, 380–400 (2007).

    Google Scholar 

  65. Berman, H., Henrick, K. & Nakamura, H. Announcing the worldwide Protein Data Bank. Nat. Struct. Biol. 10, 980 (2003).

    CAS  PubMed  Google Scholar 

  66. Hermjakob, H. et al. The HUPO PSI's molecular interaction format–a community standard for the representation of protein interaction data. Nat. Biotechnol. 22, 177–183 (2004).

    CAS  PubMed  Google Scholar 

  67. Hucka, M. et al. The systems biology markup language (SBML): a medium for representation and exchange of biochemical network models. Bioinformatics 19, 524–531 (2003).

    CAS  PubMed  Google Scholar 

  68. Lloyd, C.M., Halstead, M.D. & Nielsen, P.F. CellML: its future, present and past. Prog. Biophys. Mol. Biol. 85, 433–450 (2004).

    CAS  PubMed  Google Scholar 

  69. Le Novère, N. et al. The Systems Biology Graphical Notation. Nat. Biotechnol. 27, 735–741 (2009). This publication marks the first serious attempt to create a community standard for a graphical notation to represent networks in systems biology.

    PubMed  Google Scholar 

  70. Walter, T. et al. Visualization of image data from cells to organisms. Nat. Methods 7, S26–S40 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  71. O'Donoghue, S.I. et al. Visualization of macromolecular structures. Nat. Methods 7, S42–S55 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  72. Nielsen, C.B., Cantor, M., Dubchak, I., Gordon, D. & Wang, T. Visualizing genomes: techniques and challenges. Nat. Methods 7, S5–S15 (2010).

    CAS  PubMed  Google Scholar 

  73. Procter, J.B. et al. Visualization of multiple alignments, phylogenies and gene family evolution. Nat. Methods 7, S16–S25 (2010).

    CAS  PubMed  Google Scholar 

  74. Burrage, K., Hood, L. & Ragan, M.A. Advanced computing for systems biology. Brief. Bioinform. 7, 390–398 (2006).

    CAS  PubMed  Google Scholar 

  75. Awad, I.A., Rees, C.A., Hernandez-Boussard, T., Ball, C.A. & Sherlock, G. Caryoscope: an open source Java application for viewing microarray data in a genomic context. BMC Bioinformatics 5, 151 (2004).

    PubMed  PubMed Central  Google Scholar 

  76. Lau, C. et al. Exploration and visualization of gene expression with neuroanatomy in the adult mouse brain. BMC Bioinformatics 9, 153 (2008).

    PubMed  PubMed Central  Google Scholar 

  77. Weber, G.H. et al. Visual exploration of three-dimensional gene expression using physical views and linked abstract views. IEEE/ACM Trans. Comput. Biol. Bioinform. 6, 296–309 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  78. Barsky, A., Gardy, J.L., Hancock, R.E. & Munzner, T. Cerebral: a Cytoscape plugin for layout of and interaction with biological networks using subcellular localization annotation. Bioinformatics 23, 1040–1042 (2007).

    CAS  PubMed  Google Scholar 

  79. Mookherjee, N. et al. Modulation of the TLR-mediated inflammatory response by the endogenous human host defense peptide LL-37. J. Immunol. 176, 2455–2464 (2006).

    CAS  PubMed  Google Scholar 

  80. Spellman, P.T. et al. Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. Mol. Biol. Cell 9, 3273–3297 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  81. Kuntzer, J. et al. BNDB – the Biochemical Network Database. BMC Bioinformatics 8, 367 (2007).

    PubMed  PubMed Central  Google Scholar 

  82. Baitaluk, M., Sedova, M., Ray, A. & Gupta, A. BiologicalNetworks: visualization and analysis tool for systems biology. Nucleic Acids Res. 34 (web server issue), W466–W471 (2006).

    CAS  PubMed  PubMed Central  Google Scholar 

  83. Cline, M.S. et al. Integration of biological networks and gene expression data using Cytoscape. Nat. Protoc. 2, 2366–2382 (2007).

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Hooper, S.D. & Bork, P. Medusa: a simple tool for interaction graph analysis. Bioinformatics 21, 4432–4433 (2005).

    CAS  PubMed  Google Scholar 

  85. Kao, H.L. & Gunsalus, K.C. Browsing multidimensional molecular networks with the generic network browser (N-Browse). Curr. Protoc. Bioinformatics 9, 9.11.1–9.11.21 (2008).

    Google Scholar 

  86. Brown, K.R. et al. NAViGaTOR: Network Analysis, Visualization and Graphing Toronto. Bioinformatics 25, 3327–3329 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  87. Kohler, J. et al. Graph-based analysis and visualization of experimental results with ONDEX. Bioinformatics 22, 1383–1390 (2006).

    CAS  PubMed  Google Scholar 

  88. Breitkreutz, B.J., Stark, C. & Tyers, M. Osprey: a network visualization system. Genome Biol. 4, R22 (2003).

    PubMed  PubMed Central  Google Scholar 

  89. Batagelj, V. & Mrvar, A. Pajek – Program for large network analysis. Connections 21, 47–57 (1998).

    Google Scholar 

  90. Forman, J.J., Clemons, P.A., Schreiber, S.L. & Haggarty, S.J. SpectralNET–an application for spectral graph analysis and visualization. BMC Bioinformatics 6, 260 (2005).

    PubMed  PubMed Central  Google Scholar 

  91. Auber, D. A huge graph visualization framework. in Graph Drawing Software (eds. Mutzel, P. & Jünger, M.) 105–126 (Springer, Heidelberg, Germany, 2004).

    Google Scholar 

  92. Zinovyev, A., Viara, E., Calzone, L. & Barillot, E. BiNoM: a Cytoscape plugin for manipulating and analyzing biological networks. Bioinformatics 24, 876–877 (2008).

    CAS  PubMed  Google Scholar 

  93. Huttenhower, C., Mehmood, S.O. & Troyanskaya, O.G. Graphle: interactive exploration of large, dense graphs. BMC Bioinformatics 10, 417 (2009).

    PubMed  PubMed Central  Google Scholar 

  94. Longabaugh, W.J., Davidson, E.H. & Bolouri, H. Visualization, documentation, analysis, and communication of large-scale gene regulatory networks. Biochim. Biophys. Acta 1789, 363–374 (2009).

    CAS  PubMed  Google Scholar 

  95. Streit, M., Lex, A., Kalkusch, M., Zatloukal, K. & Schmalstieg, D. Caleydo: connecting pathways and gene expression. Bioinformatics 25, 2760–2761 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  96. Okuda, S. et al. KEGG atlas mapping for global analysis of metabolic pathways. Nucleic Acids Res. 36 (web server issue), W423–W426 (2008).

    CAS  PubMed  PubMed Central  Google Scholar 

  97. van Iersel, M.P. et al. Presenting and exploring biological pathways with PathVisio. BMC Bioinformatics 9, 399 (2008).

    PubMed  PubMed Central  Google Scholar 

  98. Holford, M., Li, N., Nadkarni, P. & Zhao, H. VitaPad: visualization tools for the analysis of pathway data. Bioinformatics 21, 1596–1602 (2005).

    CAS  PubMed  Google Scholar 

  99. Chung, H. J., Kim, M., Park, C. H., Kim, J., and Kim, J. H. ArrayXPath: mapping and visualizing microarray gene-expression data with integrated biological pathway resources using scalable vector graphics. Nucleic Acids Res. 32 (web server issue), W460–W464 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  100. Weniger, M., Engelmann, J.C. & Schultz, J. Genome Expression Pathway Analysis Tool–analysis and visualization of microarray gene expression data under genomic, proteomic and metabolic context. BMC Bioinformatics 8, 179 (2007).

    PubMed  PubMed Central  Google Scholar 

  101. Letunic, I., Yamada, T., Kanehisa, M. & Bork, P. iPath: interactive exploration of biochemical pathways and networks. Trends Biochem. Sci. 33, 101–103 (2008).

    CAS  PubMed  Google Scholar 

  102. Karp, P.D., Paley, S. & Romero, P. The Pathway Tools software. Bioinformatics 18 (suppl. 1), S225–S232 (2002).

    PubMed  Google Scholar 

  103. Dogrusoz, U. et al. PATIKAweb: a Web interface for analyzing biological pathways through advanced querying and visualization. Bioinformatics 22, 374–375 (2006).

    CAS  PubMed  Google Scholar 

  104. Santamaria, R., Theron, R. & Quintales, L. BicOverlapper: a tool for bicluster visualization. Bioinformatics 24, 1212–1213 (2008).

    CAS  PubMed  Google Scholar 

  105. Goncalves, J.P., Madeira, S.C. & Oliveira, A.L. BiGGEsTS: integrated environment for biclustering analysis of time series gene expression data. BMC Res Notes 2, 124 (2009).

    PubMed  PubMed Central  Google Scholar 

  106. Shamir, R. et al. EXPANDER–an integrative program suite for microarray data analysis. BMC Bioinformatics 6, 232 (2005).

    PubMed  PubMed Central  Google Scholar 

  107. Sturn, A., Quackenbush, J. & Trajanoski, Z. Genesis: cluster analysis of microarray data. Bioinformatics 18, 207–208 (2002).

    CAS  PubMed  Google Scholar 

  108. Hibbs, M.A., Dirksen, N.C., Li, K. & Troyanskaya, O.G. Visualization methods for statistical analysis of microarray clusters. BMC Bioinformatics 6, 115 (2005).

    PubMed  PubMed Central  Google Scholar 

  109. Seo, J. & Shneiderman, B. Interactively exploring hierarchical clustering results. Computer 35, 80–86 (2002).

    Google Scholar 

  110. Saldanha, A.J. Java Treeview–extensible visualization of microarray data. Bioinformatics 20, 3246–3248 (2004).

    CAS  PubMed  Google Scholar 

  111. Dietzsch, J., Gehlenborg, N. & Nieselt, K. Mayday – a microarray data analysis workbench. Bioinformatics 22, 1010–1012 (2006).

    CAS  PubMed  Google Scholar 

  112. Gehlenborg, N., Dietzsch, J. & Nieselt, K. A framework for visualization of microarray data and integrated meta information. Inf. Vis. 4, 164–175 (2005).

    Google Scholar 

  113. Saeed, A.I. et al. TM4: a free, open-source system for microarray data management and analysis. Biotechniques 34, 374–378 (2003). One of the first and still one of the most commonly used applications for the management, analysis and visualization of microarray data.

    CAS  PubMed  Google Scholar 

  114. Hochheiser, H., Baehrecke, E.H., Mount, S.M. & Shneiderman, B. Dynamic querying for pattern identification in microarray and genomic data. Proc. IEEE Multimedia and Expo Int. Conf. 3, 453–456 (2003).

    Google Scholar 

  115. Kapushesky, M. et al. Expression Profiler: next generation–an online platform for analysis of microarray data. Nucleic Acids Res. 32 (web server issue), W465–W470 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  116. Reich, M. et al. GenePattern 2.0. Nat. Genet. 38, 500–501 (2006).

    CAS  PubMed  Google Scholar 

  117. Quackenbush, J. Microarray data normalization and transformation. Nat. Genet. 32 (suppl.), 496–501 (2002).

    CAS  PubMed  Google Scholar 

  118. Brettschneider, J. . Collin, F., Bolstad, B.M. & Speed, T.P. Quality assessment for short oligonucleotide microarray data. Technometrics 50, 241–264 (2008).

    Google Scholar 

  119. Kauffmann, A., Gentleman, R. & Huber, W. ArrayQualityMetrics–a bioconductor package for quality assessment of microarray data. Bioinformatics 25, 415–416 (2009).

    CAS  PubMed  Google Scholar 

  120. Morgan, M. et al. ShortRead: a bioconductor package for input, quality assessment and exploration of high-throughput sequence data. Bioinformatics 25, 2607–2608 (2009).

    CAS  PubMed  PubMed Central  Google Scholar 

  121. Robinson, M.D., McCarthy, D.J. & Smyth, G.K. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 26, 139–140 (2010).

    CAS  PubMed  Google Scholar 

  122. Smyth, G.K., Yang, Y.H. & Speed, T. Statistical issues in cDNA microarray data analysis. Methods Mol. Biol. 224, 111–136 (2003).

    CAS  PubMed  Google Scholar 

  123. Nesvizhskii, A.I., Vitek, O. & Aebersold, R. Analysis and validation of proteomic data generated by tandem mass spectrometry. Nat. Methods 4, 787–797 (2007).

    CAS  PubMed  Google Scholar 

  124. Perkins, D.N., Pappin, D.J., Creasy, D.M. & Cottrell, J.S. Probability-based protein identification by searching sequence databases using mass spectrometry data. Electrophoresis 20, 3551–3567 (1999).

    CAS  PubMed  Google Scholar 

  125. Li, X.J. et al. A tool to visualize and evaluate data obtained by liquid chromatography-electrospray ionization-mass spectrometry. Anal. Chem. 76, 3856–3860 (2004).

    CAS  PubMed  Google Scholar 

  126. Sturm, M. & Kohlbacher, O. TOPPView: an open-source viewer for mass spectrometry data. J. Proteome Res. 8, 3760–3763 (2009).

    CAS  PubMed  Google Scholar 

  127. Kopka, J. Current challenges and developments in GC-MS based metabolite profiling technology. J. Biotechnol. 124, 312–322 (2006).

    CAS  PubMed  Google Scholar 

  128. Broeckling, C.D. et al. Metabolic profiling of Medicago truncatula cell cultures reveals the effects of biotic and abiotic elicitors on metabolism. J. Exp. Bot. 56, 323–336 (2005).

    CAS  PubMed  Google Scholar 

  129. Beckonert, O. et al. Metabolic profiling, metabolomic and metabonomic procedures for NMR spectroscopy of urine, plasma, serum and tissue extracts. Nat. Protoc. 2, 2692–2703 (2007).

    CAS  PubMed  Google Scholar 

  130. Lindon, J.C. & Nicholson, J.K. Spectroscopic and statistical techniques for information recovery in metabonomics and metabolomics. Annu. Rev. Anal. Chem. 1, 45–69 (2008).

    CAS  Google Scholar 

  131. Xia, J., Bjorndahl, T.C., Tang, P. & Wishart, D.S. MetaboMiner–semi-automated identification of metabolites from 2D NMR spectra of complex biofluids. BMC Bioinformatics 9, 507 (2008).

    PubMed  PubMed Central  Google Scholar 

  132. Hotelling, H. Analysis of complex statistical variables into principal components. J. Educ. Psychol. 24, 417–441 (1933).

    Google Scholar 

  133. Kruskal, J. Multidimensional scaling by optimizing goodness of fit to a nonmetric hypothesis. Psychometrika 29, 1–26 (1964).

    Google Scholar 

  134. Venna, J. & Kaski, S. Comparison of visualization methods for an atlas of gene expression data sets. Inf. Vis. 6, 139–154 (2007).

    Google Scholar 

  135. Inselberg, A. The plane with parallel coordinates. Vis. Comput. 1, 69–91 (1985).

    Google Scholar 

  136. Eisen, M.B., Spellman, P.T., Brown, P.O. & Botstein, D. Cluster analysis and display of genome-wide expression patterns. Proc. Natl. Acad. Sci. USA 95, 14863–14868 (1998). Milestone publication that introduced the heat map visualization to the field of transcriptomics and has been cited several thousand times.

    CAS  PubMed  PubMed Central  Google Scholar 

  137. Wilkinson, L. & Friendly, M. The history of the cluster heat map. Am. Stat. 63, 179–184 (2009).

    Google Scholar 

  138. Weinstein, J.N. Biochemistry. a postgenomic visual icon. Science 319, 1772–1773 (2008).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge S. Kühner for providing the data for Figure 1 and Â. Gonçalves for comments on parts of the manuscript. This work was partly supported by the European Union Framework Programme 6 grant 'TAMAHUD' (LSHC-CT-2007-037472).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Seán I O'Donoghue.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1-3 and Supplementary Table 1 (PDF 982 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Gehlenborg, N., O'Donoghue, S., Baliga, N. et al. Visualization of omics data for systems biology. Nat Methods 7, S56–S68 (2010). https://doi.org/10.1038/nmeth.1436

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmeth.1436

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing