Photoactivatable mCherry for high-resolution two-color fluorescence microscopy

An Erratum to this article was published on 01 April 2009

This article has been updated

Abstract

The reliance of modern microscopy techniques on photoactivatable fluorescent proteins prompted development of mCherry variants that are initially dark but become red fluorescent after violet-light irradiation. Using ensemble and single-molecule characteristics as selection criteria, we developed PAmCherry1 with excitation/emission maxima at 564/595 nm. Compared to other monomeric red photoactivatable proteins, it has faster maturation, better pH stability, faster photoactivation, higher photoactivation contrast and better photostability. Lack of green fluorescence and single-molecule behavior make monomeric PAmCherry1 a preferred tag for two-color diffraction-limited photoactivation imaging and for super-resolution techniques such as one- and two-color photoactivated localization microscopy (PALM). We performed PALM imaging using PAmCherry1-tagged transferrin receptor expressed alone or with photoactivatable GFP–tagged clathrin light chain. Pair correlation and cluster analyses of the resulting PALM images identified ≤200 nm clusters of transferrin receptor and clathrin light chain at ≤25 nm resolution and confirmed the utility of PAmCherry1 as an intracellular probe.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Spectral, biochemical and photochemical properties of the purified PAmCherry variants.
Figure 2: Plasma membrane distribution of TfR observed using PALM.
Figure 3: Comparison of PAmCherry1 and tdEosFP fusions in fixed cells.
Figure 4: Distributions of TfR and CLC by two-color PALM.

Change history

  • 26 February 2009

    NOTE: In the version of this article initially published, the affiliations listed for Fedor V. Subach were incorrect. The error has been corrected in the HTML and PDF versions of the article.

References

  1. 1

    Lukyanov, K.A., Chudakov, D.M., Lukyanov, S. & Verkhusha, V.V. Innovation: Photoactivatable fluorescent proteins. Nat. Rev. Mol. Cell Biol. 6, 885–891 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Hell, S.W. Far-field optical nanoscopy. Science 316, 1153–1158 (2007).

    CAS  Article  Google Scholar 

  3. 3

    Betzig, E. et al. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313, 1642–1645 (2006).

    CAS  Article  Google Scholar 

  4. 4

    Hess, S.T., Girirajan, T.P. & Mason, M.D. Ultra-high resolution imaging by fluorescence photoactivation localization microscopy. Biophys. J. 91, 4258–4272 (2006).

    CAS  Article  Google Scholar 

  5. 5

    Rust, M.J., Bates, M. & Zhuang, X. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat. Methods 3, 793–795 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Egner, A. et al. Fluorescence nanoscopy in whole cells by asynchronous localization of photoswitching emitters. Biophys. J. 93, 3285–3290 (2007).

    CAS  Article  Google Scholar 

  7. 7

    Flors, C. et al. A stroboscopic approach for fast photoactivation-localization microscopy with Dronpa mutants. J. Am. Chem. Soc. 129, 13970–13977 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Verkhusha, V.V. & Sorkin, A. Conversion of the monomeric red fluorescent protein into a photoactivatable probe. Chem. Biol. 12, 279–285 (2005).

    CAS  Article  Google Scholar 

  9. 9

    Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656 (2002).

    CAS  Article  Google Scholar 

  10. 10

    Chudakov, D.M. et al. Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol. 21, 191–194 (2003).

    CAS  Article  Google Scholar 

  11. 11

    Wiedenmann, J. et al. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. Proc. Natl. Acad. Sci. USA 101, 15905–15910 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Gurskaya, N.G. et al. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24, 461–465 (2006).

    CAS  Article  Google Scholar 

  13. 13

    Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297, 1873–1877 (2002).

    CAS  Article  Google Scholar 

  14. 14

    Chudakov, D.M. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nat. Biotechnol. 22, 1435–1439 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Ando, R., Mizuno, H. & Miyawaki, A. Regulated fast nucleocytoplasmic shuttling observed by reversible protein highlighting. Science 306, 1370–1373 (2004).

    CAS  Article  Google Scholar 

  16. 16

    Stiel, A.C. et al. Generation of monomeric reversibly switchable red fluorescent proteins for far-field fluorescence nanoscopy. Biophys. J. 95, 2989–2997 (2008).

    CAS  Article  Google Scholar 

  17. 17

    Shaner, N.C. et al. Improved monomeric red, orange and yellow fluorescent proteins derived from Discosoma sp. red fluorescent protein. Nat. Biotechnol. 22, 1567–1572 (2004).

    CAS  Article  Google Scholar 

  18. 18

    Shu, X., Shaner, N.C., Yarbrough, C.A., Tsien, R.Y. & Remington, S.J. Novel chromophores and buried charges control color in mFruits. Biochemistry 45, 9639–9647 (2006).

    CAS  Article  Google Scholar 

  19. 19

    Verkhusha, V.V. & Lukyanov, K.A. The molecular properties and applications of Anthozoa fluorescent proteins and chromoproteins. Nat. Biotechnol. 22, 289–296 (2004).

    CAS  Article  Google Scholar 

  20. 20

    Huebers, H.A., Huebers, E., Josephson, B. & Csiba, E. A highly efficient chemical isolation procedure for the rat placental transferrin receptor. Biochim. Biophys. Acta 991, 30–35 (1989).

    CAS  Article  Google Scholar 

  21. 21

    Gallione, C.J. & Rose, J.K. A single amino acid substitution in a hydrophobic domain causes temperature sensitive cell-surface transport of a mutant viral glycoprotein. J. Virol. 54, 374–382 (1985).

    CAS  PubMed  PubMed Central  Google Scholar 

  22. 22

    McGraw, T.E. & Maxfield, F.R. Human transferrin receptor internalization is partially dependent upon an aromatic amino acid on the cytoplasmic domain. Cell Regul. 1, 369–377 (1990).

    CAS  Article  Google Scholar 

  23. 23

    Hopkins, C.R. The appearance and internalization of transferrin receptors at the margins of spreading human tumor cells. Cell 40, 199–208 (1985).

    CAS  Article  Google Scholar 

  24. 24

    Shroff, H. et al. Dual-color super-resolution imaging of genetically expressed probes within individual adhesion complexes. Proc. Natl. Acad. Sci. USA 104, 20308–20313 (2007).

    CAS  Article  Google Scholar 

  25. 25

    Manley, S. et al. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5, 155–157 (2008).

    CAS  Article  Google Scholar 

  26. 26

    Pearse, B.M.F. & Robinson, M.S. Clathrin, adaptors, and sorting. Annu. Rev. Cell Biol. 6, 151–171 (1990).

    CAS  Article  Google Scholar 

  27. 27

    Heuser, J.E. & Anderson, R.G. Hypertonic media inhibit receptor-mediated endocytosis by blocking clathrin-coated pit formation. J. Cell Biol. 108, 389–400 (1989).

    CAS  Article  Google Scholar 

  28. 28

    Kirchhausen, T. Clathrin. Annu. Rev. Biochem. 69, 699–727 (2000).

    CAS  Article  Google Scholar 

  29. 29

    Habuchi, S. et al. Reversible single-molecule photoswitching in the GFP-like fluorescent protein Dronpa. Proc. Natl. Acad. Sci. USA 102, 9511–9516 (2005).

    CAS  Article  Google Scholar 

  30. 30

    Bock, H. et al. Two-color far-field fluorescence nanoscopy based on photoswitchable emitters. Appl. Phys. B 88, 161–165 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank R. Tsien (University of California at San Diego) for providing the pRSETB-mCherry plasmid, J. Wiedenmann (University of Ulm) for providing plasmids encoding EosFP variants, J. Zhang for assistance with flow cytometry, O. Subach for assistance with cell culture and imaging, and E. Betzig and H. Hess for assistance with PALM experiments, analysis and discussion. This work was supported by grants GM070358 and GM073913 from the US National Institutes of Health to V.V.V.

Author information

Affiliations

Authors

Contributions

F.V.S. developed proteins and characterized them in vitro. G.H.P., S.M. and J.M.G. characterized proteins in mammalian cells. J.L.-S. and V.V.V. designed and planned the project. G.H.P. and V.V.V. wrote the manuscript.

Corresponding author

Correspondence to Vladislav V Verkhusha.

Supplementary information

Supplementary Text and Figures

Supplementary Figures 1–6, Supplementary Table 1, Supplementary Methods (PDF 9095 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Subach, F., Patterson, G., Manley, S. et al. Photoactivatable mCherry for high-resolution two-color fluorescence microscopy. Nat Methods 6, 153–159 (2009). https://doi.org/10.1038/nmeth.1298

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing