Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering GPCR signaling pathways with RASSLs

Abstract

We are creating families of designer G protein–coupled receptors (GPCRs) to allow for precise spatiotemporal control of GPCR signaling in vivo. These engineered GPCRs, called receptors activated solely by synthetic ligands (RASSLs), are unresponsive to endogenous ligands but can be activated by nanomolar concentrations of pharmacologically inert, drug-like small molecules. Currently, RASSLs exist for the three major GPCR signaling pathways (Gs, Gi and Gq). We review these advances here to facilitate the use of these powerful and diverse tools.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Creating RASSLs by targeted mutagenesis.
Figure 2: Ligand-dependent and -independent phenotypes are induced by tissue-specific expression of a hRO-i, a Gi RASSL.
Figure 3: Directed molecular evolution to create new RASSLs.

References

  1. 1

    Armbruster, B.N. & Roth, B.L. Mining the receptorome. J. Biol. Chem. 280, 5129–5132 (2005).

    CAS  Article  Google Scholar 

  2. 2

    Wettschureck, N. & Offermanns, S. Mammalian G proteins and their cell type specific functions. Physiol. Rev. 85, 1159–1204 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Spiegel, A.M. & Weinstein, L.S. Inherited diseases involving G proteins and G protein-coupled receptors. Annu. Rev. Med. 55, 27–39 (2004).

    CAS  Article  Google Scholar 

  4. 4

    Hopkins, A.L. & Groom, C.R. The druggable genome. Nat. Rev. Drug Discov. 1, 727–730 (2002).

    CAS  Article  Google Scholar 

  5. 5

    Coward, P. et al. Controlling signaling with a specifically designed Gi-coupled receptor. Proc. Natl. Acad. Sci. USA 95, 352–357 (1998).

    CAS  Article  Google Scholar 

  6. 6

    Small, K.M., Brown, K.M., Forbes, S.L. & Liggett, S.B. Modification of the beta 2-adrenergic receptor to engineer a receptor-effector complex for gene therapy. J. Biol. Chem. 276, 31596–31601 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Jacobson, K.A., Gao, Z.G. & Liang, B.T. Neoceptors: reengineering GPCRs to recognize tailored ligands. Trends Pharmacol. Sci. 28, 111–116 (2007).

    CAS  Article  Google Scholar 

  8. 8

    Armbruster, B.N., Li, X., Pausch, M.H., Herlitze, S. & Roth, B.L. Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc. Natl. Acad. Sci. USA 104, 5163–5168 (2007).

    Article  Google Scholar 

  9. 9

    Strader, C.D. et al. Allele-specific activation of genetically engineered receptors. J. Biol. Chem. 266, 5–8 (1991).

    CAS  PubMed  Google Scholar 

  10. 10

    Ballesteros, J.A. & Weinstein, H. Integrated methods for modeling G-protein coupled receptors. Meth. Neurosci. 25, 366–428 (1995).

    CAS  Article  Google Scholar 

  11. 11

    Redfern, C.H. et al. Conditional expression and signaling of a specifically designed Gi-coupled receptor in transgenic mice. Nat. Biotechnol. 17, 165–169 (1999).

    CAS  Article  Google Scholar 

  12. 12

    Mueller, K.L. et al. The receptors and coding logic for bitter taste. Nature 434, 225–229 (2005).

    CAS  Article  Google Scholar 

  13. 13

    Zhao, G.Q. et al. The receptors for mammalian sweet and umami taste. Cell 115, 255–266 (2003).

    CAS  Article  Google Scholar 

  14. 14

    Redfern, C.H. et al. Conditional expression of a Gi-coupled receptor causes ventricular conduction delay and a lethal cardiomyopathy. Proc. Natl. Acad. Sci. USA 97, 4826–4831 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Sweger, E.J., Casper, K.B., Scearce-Levie, K., Conklin, B.R. & McCarthy, K.D. Development of hydrocephalus in mice expressing the G(i)-coupled GPCR Ro1 RASSL receptor in astrocytes. J. Neurosci. 27, 2309–2317 (2007).

    CAS  Article  Google Scholar 

  16. 16

    Peng, J. et al. Conditional expression of a Gi-coupled receptor in osteoblasts results in trabecular osteopenia. Endocrinol. 149, 1329–1337 (2007).

    Article  Google Scholar 

  17. 17

    Claeysen, S., Joubert, L., Sebben, M., Bockaert, J. & Dumuis, A. A single mutation in the 5–HT4 receptor (5–HT4-R D100(3.32)A) generates a Gs-coupled receptor activated exclusively by synthetic ligands (RASSL). J. Biol. Chem. 278, 699–702 (2003).

    CAS  Article  Google Scholar 

  18. 18

    Bruysters, M., Jongejan, A., Akdemir, A., Bakker, R.A. & Leurs, R.A.G. (q/11)-coupled mutant histamine H(1) receptor F435A activated solely by synthetic ligands (RASSL). J. Biol. Chem. 280, 34741–34746 (2005).

    CAS  Article  Google Scholar 

  19. 19

    Kristiansen, K. et al. A highly conserved aspartic acid (Asp-155) anchors the terminal amine moiety of tryptamines and is involved in membrane targeting of the 5-HT(2A) serotonin receptor but does not participate in activation via a “salt-bridge disruption” mechanism. J. Pharmacol. Exp. Ther. 293, 735–746 (2000).

    CAS  PubMed  Google Scholar 

  20. 20

    Srinivasan, S., Santiago, P., Lubrano, C., Vaisse, C. & Conklin, B.R. Engineering the melanocortin-4 receptor to control constitutive and ligand-mediated G(S) signaling in vivo. PLoS ONE 2, e668 (2007).

    Article  Google Scholar 

  21. 21

    Chang, W.C. et al. Modifying ligand-induced and constitutive signaling of the human 5–HT4 receptor. PLoS ONE 2, e1317 (2007).

    Article  Google Scholar 

  22. 22

    Hsiao, E.C. et al. Osteoblast expression of an engineered Gs-coupled receptor dramatically increases bone mass. Proc. Natl. Acad. Sci. USA 105, 1209–1214 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Pauwels, P.J. Unravelling multiple ligand-activation binding sites using RASSL receptors. Trends Pharmacol. Sci. 24, 504–507 (2003).

    CAS  Article  Google Scholar 

  24. 24

    Bender, D., Holschbach, M. & Stocklin, G. Synthesis of n.c.a. carbon-11 labelled clozapine and its major metabolite clozapine-N-oxide and comparison of their biodistribution in mice. Nucl. Med. Biol. 21, 921–925 (1994).

    CAS  Article  Google Scholar 

  25. 25

    Pausch, M.H. G-protein-coupled receptors in Saccharomyces cerevisiae: high-throughput screening assays for drug discovery. Trends Biotechnol. 15, 487–494 (1997).

    CAS  Article  Google Scholar 

  26. 26

    Dohlman, H.G., Thorner, J., Caron, M.G. & Lefkowitz, R.J. Model systems for the study of seven-transmembrane-segment receptors. Annu. Rev. Biochem. 60, 653–688 (1991).

    CAS  Article  Google Scholar 

  27. 27

    Li, B. et al. Rapid identification of functionally critical amino acids in a G protein-coupled receptor. Nat. Methods 4, 169–174 (2007).

    CAS  Article  Google Scholar 

  28. 28

    Minic, J., Sautel, M., Salesse, R. & Pajot-Augy, E. Yeast system as a screening tool for pharmacological assessment of g protein coupled receptors. Curr. Med. Chem. 12, 961–969 (2005).

    CAS  Article  Google Scholar 

  29. 29

    Shapiro, D.A., Kristiansen, K., Weiner, D.M., Kroeze, W.K. & Roth, B.L. Evidence for a model of agonist-induced activation of 5-hydroxytryptamine 2A serotonin receptors that involves the disruption of a strong ionic interaction between helices 3 and 6. J. Biol. Chem. 277, 11441–11449 (2002).

    CAS  Article  Google Scholar 

  30. 30

    Violin, J.D. & Lefkowitz, R.J. Beta-arrestin-biased ligands at seven-transmembrane receptors. Trends Pharmacol. Sci. 28, 416–422 (2007).

    CAS  Article  Google Scholar 

  31. 31

    Cherezov, V. et al. High-resolution crystal structure of an engineered human beta2-adrenergic G protein-coupled receptor. Science 318, 1258–1265 (2007).

    CAS  Article  Google Scholar 

  32. 32

    Roth, B.L. Drugs and valvular heart disease. N. Engl. J. Med. 356, 6–9 (2007).

    CAS  Article  Google Scholar 

  33. 33

    Seifert, R. & Wenzel-Seifert, K. Constitutive activity of G-protein-coupled receptors: cause of disease and common property of wild-type receptors. Naunyn Schmiedebergs Arch. Pharmacol. 366, 381–416 (2002).

    CAS  Article  Google Scholar 

  34. 34

    Kenakin, T. Efficacy at G-protein-coupled receptors. Nat. Rev. Drug Discov. 1, 103–110 (2002).

    CAS  Article  Google Scholar 

  35. 35

    Srinivasan, S. et al. Constitutive activity of the melanocortin-4 receptor is maintained by its N-terminal domain and plays a role in energy homeostasis in humans. J. Clin. Invest. 114, 1158–1164 (2004).

    CAS  Article  Google Scholar 

  36. 36

    Winzell, M.S. & Ahren, B. G-protein-coupled receptors and islet function-implications for treatment of type 2 diabetes. Pharmacol. Ther. 116, 437–448 (2007).

    CAS  Article  Google Scholar 

  37. 37

    Scearce-Levie, K., Lieberman, M.D., Elliott, H.H. & Conklin, B.R. Engineered G protein coupled receptors reveal independent regulation of internalization, desensitization and acute signaling. BMC Biol. 3, 3 (2005).

    Article  Google Scholar 

Download references

Acknowledgements

We thank our funding agencies and the members of our labs who have contributed to the RASSL projects: US National Institutes of Health (HL60664-07 to B.R.C.; DK072071 to R.A.N.; and U19MH82441 to B.L.R), a National Alliance for Research on Schizophrenia and Depression Distinguished Investigator Award (to B.L.R.), the American Heart Association pre-doctoral fellowship program (0415005Y to W.C.C.), the Veterans Affairs Merit Review and Career Scientist Program (R.A.N.) and the Gladstone–California Institute of Regenerative Medicine, fellowship program (grant T2-00003 to E.C.H.). The Gladstone Institutes received support from the US National Center for Research Resources Grant RR18928-01. We thank J. Ng, T. Nguyen, D. Srivastava, R.W. Mahley, H. Zahed, B. Phillips, M. Spindler, G. Howard and S. Ordway for providing valuable technical assistance and discussions.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Bruce R Conklin or Bryan L Roth.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Conklin, B., Hsiao, E., Claeysen, S. et al. Engineering GPCR signaling pathways with RASSLs. Nat Methods 5, 673–678 (2008). https://doi.org/10.1038/nmeth.1232

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing