Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of superconductivity in the polyhedral-network compound Ba8Si46

Abstract

The silicon clathrates—materials composed of metal-doped Si20 dodecahedra—were identified as the first superconductors based on pure silicon networks1,2. The mechanism of superconductivity in these materials can be obtained by studying their phonon modes, as modified by isotope substitution, and specific-heat measurements. Here, we present experimental studies that provide strong evidence that superconductivity in Ba8Si46 is explained in the framework of phonon-mediated Bardeen–Cooper–Schriefer theory. Analyses using the McMillan approximation3,4 of the Eliashberg equation indicate that the superconducting mechanism is in the medium coupling regime, but at the high-end limit. The large density of states at the Fermi level, which arises from hybridization of the Si20 cluster and Ba orbitals, is responsible for the unexpectedly high superconducting temperature. The temperature evolution of the specific heat unambiguously shows that this is an s-wave symmetry superconductor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Raman spectra of Ba828Si46, Ba830Si46 and Ba8Au628Si40.
Figure 2
Figure 3: The temperature evolution of the specific heat C of Ba8Si46 scaled by γTc.

Similar content being viewed by others

References

  1. Kawaji, A., Horie, H., Yamanaka, S. & Ishikawa, M. Superconductivity in the silicon clathrate compound (Na,Ba)xSi46 . Phys. Rev. Lett. 47, 1427–1429 (1995).

    Article  Google Scholar 

  2. Yamanaka, S., Enishi, E., Fukuoka, H. & Yasukawa, M. High-pressure synthesis of a new silicon clathrate superconductor Ba8Si46 . Inorg. Chem. 39, 56–58 (2000).

    Article  CAS  Google Scholar 

  3. McMillan, W.L. Transition temperature of strong-coupled superconductors. Phys. Rev. 167, 331–344 (1968).

    Article  CAS  Google Scholar 

  4. Carbotte, J.P. Properties of boson-exchange superconductors. Rev. Mod. Phys. 62, 1027–1157 (1990).

    Article  CAS  Google Scholar 

  5. Bednorz, J.G. & Müller, K.A. Possible high Tc superconductivity in the Ba-La-Cu-O system. Z. Phys. B Condens. Matter 64, 189–193 (1986).

    Article  CAS  Google Scholar 

  6. Jèrome, D., Mazaud, A., Ribauld, M. & Bechgaad, K. Superconductivity in a synthetic organic conductor (TMTSF)2PF6 . J. Physique Lett. 41, L95–L98, (1980).

    Article  Google Scholar 

  7. Hebard, A.F. et al. Superconductivity at 18 K in potassium-doped C60 . Nature 350, 600–601 (1991).

    Article  CAS  Google Scholar 

  8. Tanigaki, K. et al. Superconductivity at 33 K in CsxRbyC60 . Nature 352, 222–223 (1991).

    Article  CAS  Google Scholar 

  9. Tanigaki, K. et al. Superconductivity in sodium- and lithium-containing alkali-metal fullerides, Nature 356, 419–421 (1992).

    Article  CAS  Google Scholar 

  10. Yamanaka, S., Hotehama, K. & Kawaji, H. Superconductivity at 25.5 K in electron-doped layered hafnium nitride. Nature 392, 580–582 (1998).

    Article  CAS  Google Scholar 

  11. Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y. & Akimitsu, J. Superconductivity at 39 K in magnesium diboride. Nature 410, 63–64 (2001).

    Article  CAS  Google Scholar 

  12. Bourne, L.C., Zettle, A., Barbee, T.W. III & Cohen, M.L. Complete absence of isotope effect in YBa2Cu3O7 . Phys. Rev. B. 36, 3990–3993 (1987).

    Article  CAS  Google Scholar 

  13. Williams, J.M. et al. Organic superconductors new benchmarks. Science 252, 1501–1503 (1991).

    Article  CAS  Google Scholar 

  14. Ebbesen, T.W. et al. Isotope effect on superconductivity in Rb3C60 . Nature 335, 620–622 (1992).

    Article  Google Scholar 

  15. Ramirez, A.P. et al. Isotope effect in superconducting Rb3C60 . Phys. Rev. Lett. 68, 1058–1061 (1992).

    Article  CAS  Google Scholar 

  16. Fuhrer, M.S., Cherrey, K., Zettle, A., Cohen, M.L. & Crespi, V.H. Carbon isotope effect in single-crystal Rb3C60 . Phys. Rev. Lett. 83, 404–407 (1999).

    Article  CAS  Google Scholar 

  17. Tou, H., Maniwa, T. & Yamanaka, S. Superconducting characteristics in electron-doped layered hafnium nitride: 15N isotope effect studies. Phys. Rev. B 67, 100509 (2003).

    Article  Google Scholar 

  18. Petrovic, C. et al. Boron isotope effect in superconducting MgB2 . Phys. Rev. Lett. 86, 1877–1899 (2001).

    Article  Google Scholar 

  19. Haller, E.E. Isotopically engineered semiconductors. J. Appl. Phys. 77, 2857–2878 (1995).

    Article  CAS  Google Scholar 

  20. Takyu, K., Itoh, K.M., Oka, K., Saito, N. & Ozhogin, V.I. Growth and characterization of the isotopically enriched 28Si bulk single crystal. Jpn J. Appl. Phys. 38, L1493–L1495, (1999).

    Article  CAS  Google Scholar 

  21. Fang, S.L. et al. Raman scattering from vibrational modes in Si46 clathrates. Phys. Rev. B 57, 7686–7693 (1998).

    Article  CAS  Google Scholar 

  22. Herrmann, R., Tanigaki, K., Kawaguchi, T., Kuroshima, S. & Zhou, O. Electronic structure of Si and Ge gold-doped clathrates. Phys. Rev. B 60, 13245–13248 (1999).

    Article  CAS  Google Scholar 

  23. Yokoya, T. et al. Electronic structure and superconducting gap of silicon clathrate Ba8Si46 studied with ultrahigh-resolution photoemission spectroscopy. Phys. Rev. B 64, 172504 (2001).

    Article  Google Scholar 

  24. Saito, S. & Oshiyama, A. Electronic Structure if Si46 and Na2Ba6Si46 . Phys. Rev. B 51, 2628–2631 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank V. I. Ozhogin for supplying 30Si and T. Atake for discussion of specific heat. We also wish to thank the staff members at SPring-8, Japan (beamline BL02B2 and BL25SU) for their support and to express our appreciation for the use of the facility of high-energy beam. Institute of Material Research No129-2003 is also acknowledged for support of its facility usage. Financial support from the nanotechnology proposals of the both beam lines from SPring-8 is also greatly appreciated. The project was supported by a Grant-in-Aid from the Ministry of Education, Sport, Science and Culture of Japan, No. 13304031 and 14076215. This work has been supported by PRESTO and CREST of JST (Japan Science and Technology Corporation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Tanigaki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanigaki, K., Shimizu, T., Itoh, K. et al. Mechanism of superconductivity in the polyhedral-network compound Ba8Si46. Nature Mater 2, 653–655 (2003). https://doi.org/10.1038/nmat981

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat981

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing