Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The remarkable difference between surface and step atoms in the magnetic anisotropy of two-dimensional nanostructures

Abstract

The original magnetic properties of nanometre-sized particles are due to the distinct contributions of volume, surface and step atoms. To disentangle these contributions is an ongoing challenge of materials science. Here we introduce a method enabling the identification of the remarkably different contributions of surface and perimeter atoms to the magnetic anisotropy energy of two-dimensional nanostructures. Our method uses the generally nonlinear relationship between perimeter length and surface area. Atomic-scale characterization of the morphology of ensembles of polydisperse nanostructures, combined with in situ measurements of their temperature-dependent magnetic susceptibility, gives access to the role played by the differently coordinated atoms. We show for Co nanostructures on a Pt(111) surface that their uniaxial out-of-plane magnetization is entirely caused by edge atoms having 20 times more anisotropy energy than their bulk and surface counterparts. Identification of the role of perimeter and surface atoms opens up unprecedented opportunities for materials engineering. As an example, we separately tune magnetic hardness and moment in bimetallic core–shell nanostructures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Co islands created on a Pt(111) surface.
Figure 2: Zero-field magnetic susceptibility χ(T) for an ensemble of monodisperse, uniaxial particles.
Figure 3: Magnetization (Mtot) of the sample shown in Fig. 1b as a function of out-of-plane field.
Figure 4: Temperature dependence of the zero-field magnetic susceptibility χ(T).
Figure 5: Tailoring magnetic properties in bimetallic islands.

Similar content being viewed by others

References

  1. Chou, S.Y. Patterned magnetic nanostructures and quantized magnetic disks. IEEE Proc. 85, 652–671 ( 1997).

    Article  CAS  Google Scholar 

  2. Harris, J. & Awschalom, D. Thin films squeeze out domains. Phys. World 19–20 ( Jan, 1999).

  3. Albrecht, M., Rettner, C.T., Moser, A., Best, M.E. & Terris, B.D. Recording performance of high-density patterned perpendicular magnetic media. Appl. Phys. Lett. 81, 2875–2877 ( 2002).

    Article  CAS  Google Scholar 

  4. Plumer, M.L., Ek, J.v. & Weller, D. (eds) The Physics of Ultra-High-Density Magnetic Recording (Springer, Berlin, 2001).

    Book  Google Scholar 

  5. Woods, S.I., Kirtley, J.R., Sun, S. & Koch, R.H. Direct investigation of superparamagnetism on Co nanoparticles films. Phys. Rev. Lett. 87, 137205 ( 2001).

    Article  CAS  Google Scholar 

  6. Petit, C., Taleb, A. & Pileni, M.P. Self-organization of magnetic nanosized cobalt particles. Adv. Mater. 10, 259–261 ( 1998).

    Article  CAS  Google Scholar 

  7. Puntes, V.F., Krishnan, K.M. & Alivisatos, P. Synthesis, self-assembly, and magnetic behavior of a two-dimensional superlattice of single-crystal ε-Co particles. Appl. Phys. Lett. 78, 2187–2189 ( 2001).

    Article  CAS  Google Scholar 

  8. Sun, S., Murray, C.B., Weller, D., Folks, L. & Moser, A. Monodisperse FePt nanoparticles and ferromagnetic FePt nanocrystal superlattices. Science 287, 1989–1992 ( 2000).

    Article  CAS  Google Scholar 

  9. Jamet, M. et al. Magnetic anisotropy of a single cobalt nanocluster. Phys. Rev. Lett. 86, 4676–4679 ( 2001).

    Article  CAS  Google Scholar 

  10. Held, G.A., Grinstein, G., Doyle, H., Sun, S. & Murray, C.B. Competing interactions in dispersions of superparamagnetic nanoparticles. Phys. Rev. B 64, 012408 ( 2001).

    Article  Google Scholar 

  11. Black, C.T., Murray, C.B., Sandstrom, R.L. & Sun, S. Spin-dependent tunneling in self-assembled cobalt-nanocrystal superlattices. Science 290, 1131–1134 ( 2000).

    Article  CAS  Google Scholar 

  12. Fruchart, O. et al. Vertical self-organization of epitaxial magnetic nanostructures. J. Magn. Magn. Mater. 239, 224–227 ( 2002).

    Article  CAS  Google Scholar 

  13. Brune, H., Giovannini, M., Bromann, K. & Kern, K. Self-organized growth of nanostructure arrays on strain-relief patterns. Nature 394, 451–453 ( 1998).

    Article  CAS  Google Scholar 

  14. Repain, V., Baudot, G., Ellmer, H. & Rousset, S. Two-dimensional long-range-ordered growth of uniform cobalt nanostructures on a Au(111) vicinal template. Europhys. Lett. 58, 730–736 ( 2002).

    Article  CAS  Google Scholar 

  15. Brune, H., Romainczyk, C., Röder, H. & Kern, K. Mechanism of the transition from fractal to dendritic growth of surface aggregates. Nature 369, 469–471 ( 1994).

    Article  CAS  Google Scholar 

  16. Wernsdorfer, W. et al. Experimental evidence of the Néel-Brown model of magnetization reversal. Phys. Rev. Lett. 78, 1791–1794 ( 1997)

    Article  CAS  Google Scholar 

  17. Kinzel, W. & Fischer, K.H. Dynamics of spin glasses. Solid State Commun. 23, 687–690 ( 1977).

    Article  CAS  Google Scholar 

  18. Koide, T. et al. Direct Determination of interfacial magnetic moments with a magnetic phase transition in Co nanoclusters on Au(111). Phys. Rev. Lett. 87, 257201 ( 2001).

    Article  CAS  Google Scholar 

  19. Wu, R., Li, C. & Freeman, A.J. Structural, electronic and magnetic properties of Co/Pd(111) and Co/Pt(111). J. Magn. Magn. Mater. 99, 71–80 ( 1991).

    Article  CAS  Google Scholar 

  20. Nakajima, N. et al. Perpendicular magnetic anisotropy caused by interfacial hybridization via enhanced orbital moment in Co/Pt multilayers: magnetic circular x-ray dichroism study. Phys. Rev. Lett. 81, 5229–5232 ( 1998).

    Article  CAS  Google Scholar 

  21. Ferrer, S. et al. Surface X-ray diffraction from Co/Pt(111) ultrathin films and alloys: Structure and magnetism. Phys. Rev. B 56, 9848–9857 ( 1997).

    Article  CAS  Google Scholar 

  22. Aharoni, A. Demagnetizing factors for rectangular ferromagnetic prisms. J. Appl. Phys. 83, 3432–3434 ( 1998).

    Article  CAS  Google Scholar 

  23. Gambardella, P. et al. Ferromagnetism in one-dimensional monatomic metal chains. Nature 416, 301–304 ( 2002).

    Article  CAS  Google Scholar 

  24. Chantrell, R.W., Walmsley, N., Gore, J. & Maylin, M. Calculations of the susceptibility of interacting superparamagnetic particles. Phys. Rev. B 63, 024410 ( 2000).

    Article  Google Scholar 

  25. Haginoya, C. et al. Magnetic nanoparticle array with perpendicular crystal magnetic anisotropy. J. Appl. Phys. 85, 8327–8331 ( 1999).

    Article  CAS  Google Scholar 

  26. Weber, W., Back, C.H., Bischof, A., Pescia, D. & Allenspach, R. Magnetic switching in cobalt films by adsorption of copper. Nature 374, 788–790 ( 1995).

    Article  CAS  Google Scholar 

  27. Dürr, H.A. et al. Spin and orbital magnetization in self-assembled Co clusters on Au(111). Phys. Rev. B 59, R701–R704 ( 1999).

    Article  Google Scholar 

  28. Ohresser, P., Brookes, N.B., Padovani, S., Scheurer, F. & Bulou, H. Magnetism of small Fe clusters on Au(111) studied by x-ray magnetic circular dichroism. Phys. Rev. B 64, 104429 ( 2001).

    Article  Google Scholar 

Download references

Acknowledgements

We gratefully acknowledge the contribution of A. Barraud and financial support from Top-Nano-21 and from the Swiss National Science Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H. Brune.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rusponi, S., Cren, T., Weiss, N. et al. The remarkable difference between surface and step atoms in the magnetic anisotropy of two-dimensional nanostructures. Nature Mater 2, 546–551 (2003). https://doi.org/10.1038/nmat930

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat930

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing