Article | Published:

Nanodiffusion in electrocatalytic films

Nature Materials volume 16, pages 10161021 (2017) | Download Citation

Abstract

In the active interest aroused by electrochemical reactions’ catalysis, related to modern energy challenges, films deposited on electrodes are often preferred to homogeneous catalysts. A particularly promising variety of such films, in terms of efficiency and selectivity, is offered by sprinkling catalytic nanoparticles onto a conductive network. Coupled with the catalytic reaction, the competitive occurrence of various modes of substrate diffusion—diffusion toward nanoparticles (‘nanodiffusion’) against film linear diffusion and solution linear diffusion—is analysed theoretically. It is governed by a dimensionless parameter that contains all the experimental factors, thus allowing one to single out the conditions in which nanodiffusion is the dominant mode of mass transport. These theoretical predictions are illustrated experimentally by proton reduction on a mixture of platinum nanoparticles and carbon dispersed in a Nafion film deposited on a glassy carbon electrode. The density of nanoparticles and the scan rate are used as experimental variables to test the theory.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    et al. Energy implications of future stabilization of atmospheric CO2 content. Nature 385, 881–884 (1998).

  2. 2.

    & Powering the planet: chemical challenges in solar energy utilization. Proc. Natl Acad. Sci. USA 103, 15729–15735 (2006).

  3. 3.

    Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

  4. 4.

    Chemistry of personalized solar energy. Inorg. Chem. 48, 10001–10017 (2009).

  5. 5.

    Keeping the energy debate clean: how do we supply the world’s energy needs? Proc. IEEE 98, 42–66 (2010).

  6. 6.

    & Opportunities and challenges for a sustainable energy future. Nature 488, 294–303 (2012).

  7. 7.

    & Solar fuels generation and molecular systems: is it homogeneous or heterogeneous catalysis? Chem. Soc. Rev. 42, 2338–2356 (2013).

  8. 8.

    et al. Scanning electrochemical microscopy of redox-mediated hydrogen evolution catalyzed by two-dimensional assemblies of palladium nanoparticles. J. Phys. Chem. C 112, 9686–9694 (2008).

  9. 9.

    Inner-sphere heterogeneous electrode reactions. Electrocatalysis and photocatalysis: the challenge. J. Am. Chem. Soc. 132, 7559–7567 (2010).

  10. 10.

    et al. Electrodeposition of nickel hydroxide nanoparticles on boron-doped diamond electrodes for oxidative electrocatalysis. J. Phys. Chem. C 115, 1649–1658 (2011).

  11. 11.

    Structure sensitivity and nanoscale effects in electrocatalysis. Nanoscale 3, 2054–2073 (2011).

  12. 12.

    , & Screening of electrocatalysts for photoelectrochemical water oxidation on W-doped BiVO4 photocatalysts by scanning electrochemical microscopy. J. Phys. Chem. C 115, 12464–12470 (2011).

  13. 13.

    , , & Electrochemistry of nanoparticles. Angew. Chem. Int. Ed. 53, 3558–3586 (2014).

  14. 14.

    , & Engineering nanointerfaces for nanocatalysis. Chem. Soc. Rev. 43, 7870–7886 (2014).

  15. 15.

    , , , & Preparation and catalytic applications of nanomaterials: a review. RSC Adv. 5, 53381–53403 (2015).

  16. 16.

    et al. New trends in the development of heterogeneous catalysts for electrochemical CO2 reduction. Catal. Today 270, 19–30 (2016).

  17. 17.

    & Electrochemical CO2 reduction: electrocatalyst, reaction mechanism, and process engineering. Nano Energy 29, 439–456 (2016).

  18. 18.

    , , & Handbook of Fuel Cells (John Wiley, 2010).

  19. 19.

    , , & Oxygen reduction on a high-surface area Pt/Vulcan carbon catalyst: a thin-film rotating ring-disk electrode study. J. Electroanal. Chem. 495, 134–145 (2001).

  20. 20.

    et al. New insights into the electrochemical hydrogen oxidation and evolution reaction mechanism. Energy Environ. Sci. 7, 2255–2260 (2014).

  21. 21.

    & Catalysis at the nanoscale may change selectivity. Proc. Natl Acad. Sci. USA 113, 11756–11758 (2016).

  22. 22.

    , & Diffusion to an assembly of slowly growing particles on a substrate. Physica A 146, 69–88 (1987).

  23. 23.

    & Simulations of PEFC cathodes: an effectiveness factor approach. J. Appl. Electrochem. 27, 1029–1035 (1997).

  24. 24.

    , , & Electrocatalysis, diffusion and ohmic drop in PEMFC: particle size and spatial discrete distribution effects. Electrochim. Acta 43, 3681–3691 (1998).

  25. 25.

    , & Modelling of mass transfer within the PEM fuel cell active layer: limitations at the particle level. J. Appl. Electrochem. 29, 1025–1033 (1999).

  26. 26.

    , , & Transport and kinetics in multicomponent chemically modified electrodes. Faraday Discuss. 88, 139–149 (1989).

  27. 27.

    , & Microheterogeneous catalysis in modified electrodes. J. Electroanal. Chem. 261, 51–59 (1989).

  28. 28.

    & Microheterogeneous catalysis in modified electrodes: part 2. Electron transfer mediator/catalyst composites. J. Electroanal. Chem. 316, 1–22 (1991).

  29. 29.

    & Electrochemical Methods: Fundamentals and Applications 2nd edn (John Wiley, 2001).

  30. 30.

    Elements of Molecular and Biomolecular Electrochemistry: An Electrochemical Approach to Electron Transfer Chemistry Ch. 2 & 6 (John Wiley, 2006).

  31. 31.

    & Interfacial processes involving electrocatalytic evolution and oxidation of H2, and the role of chemisorbed H. Electrochim. Acta 47, 3571–3594 (2002).

  32. 32.

    Handbook of Chemistry and Physics 81st edn, 5–95 and 6–191 (CRC, 2000).

  33. 33.

    et al. Determination of the diffusion coefficient of protons in Nafion thin films by ac-electrogravimetry. Langmuir 29, 13655–13660 (2013).

  34. 34.

    , , , & Conductive mesoporous catalytic films. Current distortion and performance degradation by dual-phase ohmic drop effects. Analysis and remedies. J. Phys. Chem. C 120, 21263–21271 (2016).

Download references

Acknowledgements

The authors acknowledge the support of the French Agence Nationale de la Recherche (ANR) under reference ANR-12-JS08-0004.

Author information

Affiliations

  1. Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d’Electrochimie Moléculaire, Unité Mixte de Recherche Université—CNRS No 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France

    • Cyrille Costentin
    • , Carlo Di Giovanni
    • , Jean-Michel Savéant
    •  & Cédric Tard
  2. Université Paris Diderot, Sorbonne Paris Cité, Laboratoire ITODYS, Unité Mixte de Recherche Université—CNRS No 7086, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75205 Paris Cedex 13, France

    • Marion Giraud

Authors

  1. Search for Cyrille Costentin in:

  2. Search for Carlo Di Giovanni in:

  3. Search for Marion Giraud in:

  4. Search for Jean-Michel Savéant in:

  5. Search for Cédric Tard in:

Contributions

C.C., J.-M.S. and C.T. designed the experiments. C.D.G. and C.T. performed the electrochemical measurements. M.G. conducted the microscopy measurements. C.C. and J.-M.S. wrote the manuscript, which all authors edited.

Competing interests

The authors declare no competing financial interests.

Corresponding authors

Correspondence to Cyrille Costentin or Jean-Michel Savéant or Cédric Tard.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nmat4968