A magnetic topological semimetal Sr1−yMn1−zSb2 (y, z < 0.1)

Article metrics

Abstract

Weyl (WSMs) evolve from Dirac semimetals in the presence of broken time-reversal symmetry (TRS) or space-inversion symmetry. The WSM phases in TaAs-class materials and photonic crystals are due to the loss of space-inversion symmetry. For TRS-breaking WSMs, despite numerous theoretical and experimental efforts, few examples have been reported. In this Article, we report a new type of magnetic semimetal Sr1−yMn1−zSb2 (y, z < 0.1) with nearly massless relativistic fermion behaviour (m = 0.04 − 0.05m0, where m0 is the free-electron mass). This material exhibits a ferromagnetic order for 304 K < T < 565 K, but a canted antiferromagnetic order with a ferromagnetic component for T < 304 K. The combination of relativistic fermion behaviour and ferromagnetism in Sr1−yMn1−zSb2 offers a rare opportunity to investigate the interplay between relativistic fermions and spontaneous TRS breaking.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Quantum oscillations in Sr1−yMn1−zSb2.
Figure 2: Non-trivial Berry phase of realistic fermions in Sr1−yMn1−zSb2.
Figure 3: Coupling between magnetism and quantum transport properties in Sr1−yMn1−zSb2.
Figure 4: Magnetism of Sr1−yMn1−zSb2.

References

  1. 1

    Wang, Z. et al. Dirac semimetal and topological phase transitions in A3Bi(A = Na, K, Rb). Phys. Rev. B 85, 195320 (2012).

  2. 2

    Liu, Z. K. et al. Discovery of a three-dimensional topological Dirac semimetal, Na3Bi. Science 343, 864–867 (2014).

  3. 3

    Wang, Z., Weng, H., Wu, Q., Dai, X. & Fang, Z. Three-dimensional Dirac semimetal and quantum transport in Cd3As2 . Phys. Rev. B 88, 125427 (2013).

  4. 4

    Liu, Z. K. et al. A stable three-dimensional topological Dirac semimetal Cd3As2 . Nat. Mater. 13, 677–681 (2014).

  5. 5

    Neupane, M. et al. Observation of a three-dimensional topological Dirac semimetal phase in high-mobility Cd3As2 . Nat. Commun. 5, 3786 (2014).

  6. 6

    Borisenko, S. et al. Experimental realization of a three-dimensional Dirac semimetal. Phys. Rev. Lett. 113, 027603 (2014).

  7. 7

    Liang, T. et al. Ultrahigh mobility and giant magnetoresistance in the Dirac semimetal Cd3As2 . Nat. Mater. 14, 280–284 (2015).

  8. 8

    Narayanan, A. et al. Linear magnetoresistance caused by mobility fluctuations in n-doped Cd3As2 . Phys. Rev. Lett. 114, 117201 (2015).

  9. 9

    Li, Q. et al. Chiral magnetic effect in ZrTe5 . Nat. Phys. 12, 550–554 (2016).

  10. 10

    Bian, G. et al. Topological nodal-line fermions in spin–orbit metal PbTaSe2 . Nat. Commun. 7, 10556 (2016).

  11. 11

    Wu, Y. et al. Dirac node arcs in PtSn4 . Nat. Phys. 12, 667–671 (2016).

  12. 12

    Schoop, L. M. et al. Dirac cone protected by non-symmorphic symmetry and three-dimensional Dirac line node in ZrSiS. Nat. Commun. 7, 11696 (2016).

  13. 13

    Huang, S.-M. et al. A Weyl Fermion semimetal with surface Fermi arcs in the transition metal monopnictide TaAs class. Nat. Commun. 6, 7373 (2015).

  14. 14

    Weng, H., Fang, C., Fang, Z., Bernevig, B. A. & Dai, X. Weyl semimetal phase in noncentrosymmetric transition-metal monophosphides. Phys. Rev. X 5, 011029 (2015).

  15. 15

    Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

  16. 16

    Nielsen, H. B. & Ninomiya, M. The Adler-Bell-Jackiw anomaly and Weyl fermions in a crystal. Phys. Lett. B 130, 389–396 (1983).

  17. 17

    Son, D. T. & Spivak, B. Z. Chiral anomaly and classical negative magnetoresistance of Weyl metals. Phys. Rev. B 88, 104412 (2013).

  18. 18

    Jho, Y.-S. & Kim, K.-S. Interplay between interaction and chiral anomaly: anisotropy in the electrical resistivity of interacting Weyl metals. Phys. Rev. B 87, 205133 (2013).

  19. 19

    Yang, L. X. et al. Weyl semimetal phase in the non-centrosymmetric compound TaAs. Nat. Phys. 11, 728–732 (2015).

  20. 20

    Xu, S.-Y. et al. Discovery of a Weyl fermion semimetal and topological Fermi arcs. Science 349, 613–617 (2015).

  21. 21

    Xu, N. et al. Observation of Weyl nodes and Fermi arcs in tantalum phosphide. Nat. Commun. 7, 11006 (2015).

  22. 22

    Lv, B. Q. et al. Experimental discovery of Weyl semimetal TaAs. Phys. Rev. X 5, 031013 (2015).

  23. 23

    Xu, S.-Y. et al. Discovery of a Weyl fermion state with Fermi arcs in niobium arsenide. Nat. Phys. 11, 748–754 (2015).

  24. 24

    Lu, L. et al. Experimental observation of Weyl points. Science 349, 622–624 (2015).

  25. 25

    Borisenko, S. et al. Time-reversal symmetry breaking type-II Weyl state in YbMnBi2. Preprint at http://arxiv.org/abs/1507.04847 (2015).

  26. 26

    Park, J. et al. Anisotropic Dirac fermions in a Bi square net of SrMnBi2 . Phys. Rev. Lett. 107, 126402 (2011).

  27. 27

    Feng, Y. et al. Strong anisotropy of Dirac cones in SrMnBi2 and CaMnBi2 revealed by angle-resolved photoemission spectroscopy. Sci. Rep. 4, 05385 (2014).

  28. 28

    Masuda, H. et al. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2, e1501117 (2016).

  29. 29

    Farhan, M. A., Geunsik, L. & Ji Hoon, S. AEMnSb2 (AE = Sr, Ba): a new class of Dirac materials. J. Phys. Condens. Matter 26, 042201 (2014).

  30. 30

    Liu, J. et al. Nearly massless Dirac fermions hosted by Sb square net in BaMnSb2 . Sci. Rep. 6, 30525 (2016).

  31. 31

    Brechtel, E., Cordier, G. & Schäfer, H. Neue ternäre erdalkali-übergangselement-pnictide. J. Less-Common Met. 79, 131–138 (1981).

  32. 32

    Kartsovnik, M. V. High magnetic fields: a tool for studying electronic properties of layered organic metals. Chem. Rev. 104, 5737–5782 (2004).

  33. 33

    He, L. P. et al. Quantum transport evidence for the three-dimensional Dirac semimetal phase in Cd3As2 . Phys. Rev. Lett. 113, 246402 (2014).

  34. 34

    Zhao, Y. et al. Anisotropic Fermi surface and quantum limit transport in high mobility three-dimensional Dirac semimetal Cd3As2 . Phys. Rev. X 5, 031037 (2015).

  35. 35

    Taskin, A. A. & Ando, Y. Berry phase of nonideal Dirac fermions in topological insulators. Phys. Rev. B 84, 035301 (2011).

  36. 36

    Xiong, J. et al. High-field Shubnikov–de Haas oscillations in the topological insulator Bi2Te2Se. Phys. Rev. B 86, 045314 (2012).

  37. 37

    Ando, Y. Topological insulator materials. J. Phys. Soc. Jpn 82, 102001 (2013).

  38. 38

    Guo, Y. F. et al. Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr, Ca). Phys. Rev. B 90, 075120 (2014).

  39. 39

    Wang, A. et al. Two-dimensional Dirac fermions in YbMnBi2 antiferromagnet. Phys. Rev. B 94, 165161 (2016).

  40. 40

    Liu, J. Y. et al. Unusual interlayer quantum transport behavior caused by the zeroth Landau level in YbMnBi2. Preprint at http://arxiv.org/abs/1608.05956 (2016).

  41. 41

    Huang, S., Kim, J., Shelton, W. A., Plummer, E. W. & Jin, R. Nontrivial Berry phase in magnetic BaMnSb2 semimetal. Proc. Natl Acad. Sci. USA 114, 6256–6261 (2017).

  42. 42

    Hu, J. et al. π Berry phase and Zeeman splitting of Weyl semimetal TaP. Sci. Rep. 6, 18674 (2016).

  43. 43

    Lifshitz, I. M. & Kosevich, A. M. Theory of magnetic susceptibility in metals at low temperatures. Sov. Phys. JETP 2, 636–645 (1956).

  44. 44

    Shoenberg, D. Magnetic Oscillations in Metals (Cambridge Univ. Press, 1984).

  45. 45

    Mikitik, G. P. & Sharlai, Y. V. Manifestation of Berry’s phase in metal physics. Phys. Rev. Lett. 82, 2147–2150 (1999).

  46. 46

    Chakoumakos, B. C. et al. Four-circle single-crystal neutron diffractometer at the High Flux Isotope Reactor. J. Appl. Crystallogr. 44, 655–658 (2011).

  47. 47

    Wills, A. S. A new protocol for the determination of magnetic structures using simulated annealing and representational analysis (SARAh). Physica B 276–278, 680–681 (2000).

  48. 48

    Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

Download references

Acknowledgements

The authors thank C. Wu at UCSD for helpful discussions. The work at Tulane University was supported by the NSF under Grant DMR-1205469 (support for personnel and materials) and Louisiana Board of Regents under grant LEQSF(2014-15)-ENH-TR-24 (support for equipment purchase). The neutron scattering work used resources at the High Flux Isotope Reactor, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory, and is supported by the US Department of Energy under EPSCoR Grant No. DE-SC0012432 with additional support from the Louisiana Board of Regents. The work at UNO is supported by the NSF under the NSF EPSCoR Cooperative Agreement No. EPS-1003897 with additional support from the Louisiana Board of Regents. The work at FSU and at the National High Magnetic Field Laboratory is supported by the NSF grant No. DMR-1206267, the NSF Cooperative Agreement No. DMR-1157490, and the State of Florida. Work at LANL was supported by the US DOE Basic Energy Science project ‘Science at 100 Tesla’. The authors also acknowledge support from grant DOE DE-NA0001979.

Author information

J.Y.L., J.H. and Q.Z. equally contributed to this work. The single crystals used in this study were synthesized by J.Y.L. The magnetotransport measurements in 14 T PPMS were carried out by J.Y.L., D.J.A., Z.Q.M. and L.S. The high-field measurements at NHMFL were conducted by J.H., D.G., S.M.A.R., I.C., L.S. and Z.Q.M., G.F.C., X.L., J.W. and W.A.P. contributed to X-ray structure characterization and crystal quality examination. J.H., J.Y.L. and Y.L.Z. performed magnetization measurements. Q.Z., H.B.C., J.F.D. and D.A.T. conducted neutron scattering experiments and analyses. M.J. and F.B. did pulse magnetic field measurements. J.Y.L., J.H., Y.L.Z. and Z.Q.M. conducted transport data analyses. All authors contributed to scientific discussions and read and commented on the manuscript. This project was supervised by Z.Q.M.

Correspondence to Z. Q. Mao.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1172 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, J., Hu, J., Zhang, Q. et al. A magnetic topological semimetal Sr1−yMn1−zSb2 (y, z < 0.1). Nature Mater 16, 905–910 (2017) doi:10.1038/nmat4953

Download citation

Further reading