Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids

Abstract

The dynamical behaviour of liquids is frequently characterized by the fragility, which can be defined from the temperature dependence of the shear viscosity, η (ref. 1). For a strong liquid, the activation energy for η changes little with cooling towards the glass transition temperature, Tg. The change is much greater in fragile liquids, with the activation energy becoming very large near Tg. While fragility is widely recognized as an important concept—believed, for example, to play an important role in glass formation2—the microscopic origin of fragility is poorly understood. Here, we present new experimental evidence showing that fragility reflects the strength of the repulsive part of the interatomic potential, which can be determined from the steepness of the pair distribution function near the hard-sphere cutoff. On the basis of an analysis of scattering data from ten different metallic alloy liquids, we show that stronger liquids have steeper repulsive potentials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Temperature-dependent steepness parameter from the pair distribution.
Figure 2: Viscosity and definition of kinetic fragility at high temperature.
Figure 3: Correlation between steepness parameter and kinetic fragility.
Figure 4: Correlation between MD and experimental g(r) and the steepness parameter.

Similar content being viewed by others

References

  1. Angell, C. A. Perspective on the glass transition. J. Phys. Chem. Solids 49, 863–871 (1988).

    Article  CAS  Google Scholar 

  2. Johnson, W. L., Na, J. H. & Demetriou, M. D. Quantifying the origin of metallic glass formation. Nat. Commun. 7, 10313 (2015).

    Article  Google Scholar 

  3. Bennett, C., Polk, D. & Turnbull, D. Role of composition in metallic glass formation. Acta Metall. 19, 1295–1298 (1971).

    Article  CAS  Google Scholar 

  4. Krausser, J., Samwer, K. H. & Zaccone, A. Interatomic repulsion softness directly controls the fragility of supercooled metallic melts. Proc. Natl Acad. Sci. USA 112, 13762–13767 (2015).

    Article  CAS  Google Scholar 

  5. Yang, J. & Schweizer, K. S. Glassy dynamics and mechanical response in dense fluids of soft repulsive spheres. I. Activated relaxation, kinetic vitrification, and fragility. J. Chem. Phys. 134, 204908 (2011).

    Article  Google Scholar 

  6. Mattsson, J. et al. Soft colloids make strong glasses. Nature 462, 83–86 (2009).

    Article  CAS  Google Scholar 

  7. Casalini, R. The fragility of liquids and colloids and its relation to the softness of the potential. J. Chem. Phys. 137, 204904 (2012).

    Article  CAS  Google Scholar 

  8. Casalini, R. & Roland, C. Why liquids are fragile. Phys. Rev. E 72, 031503 (2005).

    Article  CAS  Google Scholar 

  9. Ngai, K. Relaxation and Diffusion in Complex Systems (Springer Science & Business Media, 2011).

    Book  Google Scholar 

  10. Bordat, P., Affouard, F., Descamps, M. & Ngai, K. Does the interaction potential determine both the fragility of a liquid and the vibrational properties of its glassy state? Phys. Rev. Lett. 93, 105502 (2004).

    Article  Google Scholar 

  11. Sengupta, S., Vasconcelos, F., Affouard, F. & Sastry, S. Dependence of the fragility of a glass former on the softness of interparticle interactions. J. Chem. Phys. 135, 194503 (2011).

    Article  Google Scholar 

  12. Shi, Z., Debenedetti, P. G., Stillinger, F. H. & Ginart, P. Structure, dynamics, and thermodynamics of a family of potentials with tunable softness. J. Chem. Phys. 135, 084513 (2011).

    Article  Google Scholar 

  13. Ozawa, M., Kim, K. & Miyazaki, K. Tuning pairwise potential can control the fragility of glass-forming liquids: from a tetrahedral network to isotropic soft sphere models. J. Stat. Mech. Theor. Exp. 2016, 074002 (2016).

    Article  Google Scholar 

  14. Reith, D., Pütz, M. & Müller-Plathe, F. Deriving effective mesoscale potentials from atomistic simulations. J. Comput. Chem. 24, 1624–1636 (2003).

    Article  CAS  Google Scholar 

  15. Hansen, J. P. & McDonald, I. R. Theory of Simple Liquids (Elsevier, 1990).

    Google Scholar 

  16. Shannon, R. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32, 751–767 (1976).

    Article  Google Scholar 

  17. Lagogianni, A., Krausser, J., Evenson, Z., Samwer, K. & Zaccone, A. Unifying interatomic potential, g (r), elasticity, viscosity, and fragility of metallic glasses: analytical model, simulations, and experiments. J. Stat. Phys. 2016, 084001 (2016).

    Google Scholar 

  18. Iwashita, T., Nicholson, D. M. & Egami, T. Elementary excitations and crossover phenomenon in liquids. Phys. Rev. Lett. 110, 205504 (2013).

    Article  CAS  Google Scholar 

  19. Soklaski, R., Tran, V., Nussinov, Z., Kelton, K. & Yang, L. A locally preferred structure characterises all dynamical regimes of a supercooled liquid. Philos. Mag. A 96, 1212–1227 (2016).

    CAS  Google Scholar 

  20. Kivelson, D., Kivelson, S. A., Zhao, X., Nussinov, Z. & Tarjus, G. A thermodynamic theory of supercooled liquids. Physica A 219, 27–38 (1995).

    Article  CAS  Google Scholar 

  21. Blodgett, M., Egami, T., Nussinov, Z. & Kelton, K. Proposal for universality in the viscosity of metallic liquids. Sci. Rep. 5, 13837 (2015).

    Article  CAS  Google Scholar 

  22. Jaiswal, A., Egami, T., Kelton, K. F., Schweizer, K. S. & Zhang, Y. Correlation between fragility and the arrhenius crossover phenomenon in metallic, molecular, and metwork liquids. Phys. Rev. Lett. 117, 205701 (2016).

    Article  Google Scholar 

  23. Kelton, K. Kinetic and structural fragility—a correlation between structures and dynamics in metallic liquids and glasses. J. Phys. Condens. Matter 29, 023002 (2016).

    Article  Google Scholar 

  24. Ito, K., Moynihan, C. T. & Angell, C. A. Thermodynamic determination of fragility in liquids and a fragile-to-strong liquid transition in water. Nature 398, 492–495 (1999).

    Article  CAS  Google Scholar 

  25. Richert, R. & Angell, C. Dynamics of glass-forming liquids. V. On the link between molecular dynamics and configurational entropy. J. Chem. Phys. 108, 9016–9026 (1998).

    Article  CAS  Google Scholar 

  26. Hu, Y.-C. et al. Thermodynamic scaling of glassy dynamics and dynamic heterogeneities in metallic glass-forming liquid. J. Chem. Phys. 145, 104503 (2016).

    Article  Google Scholar 

  27. Mauro, N., Blodgett, M., Johnson, M., Vogt, A. & Kelton, K. A structural signature of liquid fragility. Nat. Commun. 5, 4616 (2014).

    Article  CAS  Google Scholar 

  28. Rhim, W.-K., Ohsaka, K., Paradis, P.-F. & Spjut, R. E. Noncontact technique for measuring surface tension and viscosity of molten materials using high temperature electrostatic levitation. Rev. Sci. Instrum. 70, 2796–2801 (1999).

    Article  CAS  Google Scholar 

  29. Mauro, N. & Kelton, K. A highly modular beamline electrostatic levitation facility, optimized for in situ high-energy X-ray scattering studies of equilibrium and supercooled liquids. Rev. Sci. Instrum. 82, 035114 (2011).

    Article  CAS  Google Scholar 

  30. Bendert, J., Mauro, N. & Kelton, K. Pair distribution function analysis of X-ray diffraction from amorphous spheres in an asymmetric transmission geometry: application to a Zr58.5Cu15.6Ni12.8Al10.3Nb2.8 glass. J. Appl. Crystallogr. 46, 999–1007 (2013).

    Article  CAS  Google Scholar 

  31. Johnson, M. Structural Evolution, Chemical Order, and Crystallization of Metallic Liquids and Glasses Electronic theses & dissertations, WUSTL (2015).

  32. Sheng, H., Kramer, M., Cadien, A., Fujita, T. & Chen, M. Highly optimized embedded-atom-method potentials for fourteen fcc metals. Phys. Rev. B 83, 134118 (2011).

    Article  Google Scholar 

  33. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D. Robinson for his assistance with the high-energy X-ray diffraction studies at the APS and A. Agrawal, A. Gangopadhyay, K. Samwer and L. Yang for useful discussions. K.F.K. and C.E.P. gratefully acknowledge support by NASA under Grant No. NNX16AB52G and the National Science Foundation under Grant No. DMR 15-06553. M.S. gratefully acknowledges support by the Foundation for the Science and Technological Innovation Talent of Harbin (No. 2010RFQXG028). The synchrotron measurements were made on the Sector 6 beamline at the Advanced Photon Source. Use of the Advanced Photon Source is supported by the US Department of Energy, Basic Energy Science, Office of Science, under contract no. DE-AC02-06CH11357. Any opinions, findings and conclusions or recommendations expressed in this article are those of the author(s) and do not necessarily reflect the views of the National Science Foundation or of NASA.

Author information

Authors and Affiliations

Authors

Contributions

K.F.K. conceived of the study. K.F.K. and C.E.P. obtained the experimental data, and M.S. carried out the MD simulations. K.F.K. and C.E.P. analysed all experimental and MD data, and all authors contributed to writing and editing the document.

Corresponding author

Correspondence to K. F. Kelton.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 349 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pueblo, C., Sun, M. & Kelton, K. Strength of the repulsive part of the interatomic potential determines fragility in metallic liquids. Nature Mater 16, 792–796 (2017). https://doi.org/10.1038/nmat4935

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4935

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing