Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure

Abstract

All-electrical and programmable manipulations of ferromagnetic bits are highly pursued for the aim of high integration and low energy consumption in modern information technology1,2,3. Methods based on the spin–orbit torque switching4,5,6 in heavy metal/ferromagnet structures have been proposed with magnetic field7,8,9,10,11,12,13,14,15, and are heading toward deterministic switching without external magnetic field16,17. Here we demonstrate that an in-plane effective magnetic field can be induced by an electric field without breaking the symmetry of the structure of the thin film, and realize the deterministic magnetization switching in a hybrid ferromagnetic/ferroelectric structure with Pt/Co/Ni/Co/Pt layers on PMN-PT substrate. The effective magnetic field can be reversed by changing the direction of the applied electric field on the PMN-PT substrate, which fully replaces the controllability function of the external magnetic field. The electric field is found to generate an additional spin–orbit torque on the CoNiCo magnets, which is confirmed by macrospin calculations and micromagnetic simulations.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of device structures and current switching measurements of the devices.
Figure 2: Electrical controllable deterministic magnetization switching by current pulses without magnetic field.
Figure 3: The origin of the deterministic switching.
Figure 4: Spin current density distribution and the magnetization switching.

Similar content being viewed by others

References

  1. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    Article  CAS  Google Scholar 

  2. Miron, I. M. et al. Perpendicular switching of a single ferromagnetic layer induced by in-plane current injection. Nature 476, 189–193 (2011).

    Article  CAS  Google Scholar 

  3. Matsukura, F., Tokura, Y. & Ohno, H. Control of magnetism by electric fields. Nat. Nanotech. 10, 209–220 (2015).

    Article  CAS  Google Scholar 

  4. Mihai Miron, I. et al. Current-driven spin torque induced by the Rashba effect in a ferromagnetic metal layer. Nat. Mater. 9, 230–234 (2010).

    Article  CAS  Google Scholar 

  5. Liu, L., Lee, O. J., Gudmundsen, T. J., Ralph, D. C. & Buhrman, R. A. Current-induced switching of perpendicularly magnetized magnetic layers using spin torque from the spin Hall effect. Phys. Rev. Lett. 109, 096602 (2012).

    Article  Google Scholar 

  6. Qiu, X. et al. Spin–orbit-torque engineering via oxygen manipulation. Nat. Nanotech. 10, 333–338 (2015).

    Article  CAS  Google Scholar 

  7. Lee, O. J. et al. Central role of domain wall depinning for perpendicular magnetization switching driven by spin torque from the spin Hall effect. Phys. Rev. B 89, 024418 (2014).

    Article  Google Scholar 

  8. Wu, S. et al. Enhanced spin-orbit torques in Pt/Co/Ta heterostructures. Appl. Phys. Lett. 105, 212404 (2014).

    Article  Google Scholar 

  9. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    Article  CAS  Google Scholar 

  10. Yang, M. et al. Spin-orbit torque in Pt/CoNiCo/Pt symmetric devices. Sci. Rep. 6, 20778 (2016).

    Article  CAS  Google Scholar 

  11. Sim, H. C., Huang, J. C., Tran, M. & Eason, K. Asymmetry in effective fields of spin-orbit torques in Pt/Co/Pt stacks. Appl. Phys. Lett. 104, 012408 (2014).

    Article  Google Scholar 

  12. Hayashi, M., Kim, J., Yamanouchi, M. & Ohno, H. Quantitative characterization of the spin orbit torque using harmonic Hall voltage measurements. Phys. Rev. B 89, 162–169 (2014).

    Article  Google Scholar 

  13. Bhowmik, D. et al. Deterministic domain wall motion orthogonal to current flow due to spin orbit torque. Sci. Rep. 5, 11823 (2015).

    Article  Google Scholar 

  14. Emori, S., Bauer, U., Ahn, S.-M., Martinez, E. & Beach, G. S. D. Current-driven dynamics of chiral ferromagnetic domain walls. Nat. Mater. 12, 611–616 (2013).

    Article  CAS  Google Scholar 

  15. Pi, U. H. et al. Tilting of the spin orientation induced by Rashba effect in ferromagnetic metal layer. Appl. Phys. Lett. 97, 162507 (2010).

    Article  Google Scholar 

  16. Yu, G. et al. Switching of perpendicular magnetization by spin-orbit torques in the absence of external magnetic fields. Nat. Nanotech. 9, 548–554 (2014).

    Article  CAS  Google Scholar 

  17. You, L. et al. Switching of perpendicularly polarized nanomagnets with spin orbit torque without an external magnetic field by engineering a tilted anisotropy. Proc. Natl Acad. Sci. USA 112, 10310–10315 (2015).

    Article  CAS  Google Scholar 

  18. Garello, K. et al. Symmetry and magnitude of spin-orbit torques in ferromagnetic heterostructures. Nat. Nanotech. 8, 587–593 (2013).

    Article  CAS  Google Scholar 

  19. Kim, J. et al. Layer thickness dependence of the current-induced effective field vector in Ta | CoFeB | MgO. Nat. Mater. 12, 240–245 (2013).

    Article  CAS  Google Scholar 

  20. Bhowmik, D., You, L. & Salahuddin, S. Spin Hall effect clocking of nanomagnetic logic without a magnetic field. Nat. Nanotech. 9, 59–63 (2014).

    Article  CAS  Google Scholar 

  21. Pai, C.-F., Mann, M., Tan, A. J. & Beach, G. S. D. Determination of spin torque efficiencies in heterostructures with perpendicular magnetic anisotropy. Phys. Rev. B 93, 144409 (2016).

    Article  Google Scholar 

  22. Yu, G. et al. Current-driven perpendicular magnetization switching in Ta/CoFeB/[TaOx or MgO/TaOx] films with lateral structural asymmetry. Appl. Phys. Lett. 105, 102411 (2014).

    Article  Google Scholar 

  23. van den Brink, A. et al. Field-free magnetization reversal by spin-Hall effect and exchange bias. Nat. Commun. 7, 10854 (2016).

    Article  CAS  Google Scholar 

  24. Torrejon, J. et al. Current-driven asymmetric magnetization switching in perpendicularly magnetized CoFeB/MgO heterostructures. Phys. Rev. B 91, 214434 (2015).

    Article  Google Scholar 

  25. Salis, G. et al. Electrical control of spin coherence in semiconductor nanostructures. Nature 414, 619–622 (2001).

    Article  CAS  Google Scholar 

  26. Oh, S.-C. et al. Bias-voltage dependence of perpendicular spin-transfer torque in asymmetric MgO-based magnetic tunnel junctions. Nat. Phys. 5, 898–902 (2009).

    Article  CAS  Google Scholar 

  27. Emori, S., Bauer, U., Woo, S. & Beach, G. S. D. Large voltage-induced modification of spin-orbit torques in Pt/Co/GdOx . Appl. Phys. Lett. 105, 222401 (2014).

    Article  Google Scholar 

  28. Zhang, S. & Li, Z. Roles of nonequilibrium conduction electrons on the magnetization dynamics of ferromagnets. Phys. Rev. Lett. 93, 127204 (2004).

    Article  CAS  Google Scholar 

  29. Haney, P. M. et al. Current induced torques and interfacial spin-orbit coupling: semiclassical modeling. Phys. Rev. B 87, 174411 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by NSFC Grant No. 61225021 and 11474272, ‘973 Program’ No. 2014CB643903. We also acknowledge the support from K. C. Wong Education Foundation.

Author information

Authors and Affiliations

Authors

Contributions

K.W. and M.Y. conceived and designed the experiments. H.J., S.L. and B.L. provided the thin magnetic films. K.C. and M.Y. fabricated and measured the devices. K.W., M.Y., K.C. and S.W. performed the theoretical analysis and modelling. B.Z., Y.S., and N.Z. assisted in measurement and processed the data. K.W.E., Y.J. and H.Z. discussed the results and commented on the manuscript. K.C., M.Y. and K.W. wrote the manuscript. All authors revised the manuscript.

Corresponding author

Correspondence to Kaiyou Wang.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1117 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, K., Yang, M., Ju, H. et al. Electric field control of deterministic current-induced magnetization switching in a hybrid ferromagnetic/ferroelectric structure. Nature Mater 16, 712–716 (2017). https://doi.org/10.1038/nmat4886

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4886

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing