Article | Published:

Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3

Nature Materials volume 16, pages 580586 (2017) | Download Citation


Lithium-ion battery cathode materials have relied on cationic redox reactions until the recent discovery of anionic redox activity in Li-rich layered compounds which enables capacities as high as 300 mAh g−1. In the quest for new high-capacity electrodes with anionic redox, a still unanswered question was remaining regarding the importance of the structural dimensionality. The present manuscript provides an answer. We herein report on a β-Li2IrO3 phase which, in spite of having the Ir arranged in a tridimensional (3D) framework instead of the typical two-dimensional (2D) layers seen in other Li-rich oxides, can reversibly exchange 2.5 e per Ir, the highest value ever reported for any insertion reaction involving d-metals. We show that such a large activity results from joint reversible cationic (Mn+) and anionic (O2)n redox processes, the latter being visualized via complementary transmission electron microscopy and neutron diffraction experiments, and confirmed by density functional theory calculations. Moreover, β-Li2IrO3 presents a good cycling behaviour while showing neither cationic migration nor shearing of atomic layers as seen in 2D-layered Li-rich materials. Remarkably, the anionic redox process occurs jointly with the oxidation of Ir4+ at potentials as low as 3.4 V versus Li+/Li0, as equivalently observed in the layered α-Li2IrO3 polymorph. Theoretical calculations elucidate the electrochemical similarities and differences of the 3D versus 2D polymorphs in terms of structural, electronic and mechanical descriptors. Our findings free the structural dimensionality constraint and broaden the possibilities in designing high-energy-density electrodes for the next generation of Li-ion batteries.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1.

    & Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

  2. 2.

    & Building better batteries. Nature 451, 652–657 (2008).

  3. 3.

    , & Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144, 1188–1194 (1997).

  4. 4.

    & Polyanionic (phosphates, silicates, sulfates) frameworks as electrode materials for rechargeable Li (or Na) batteries. Chem. Rev. 113, 6552–6591 (2013).

  5. 5.

    & Sulfate-based polyanionic compounds for Li-Ion batteries: synthesis, crystal chemistry, and electrochemistry aspects. Chem. Mater. 26, 394–406 (2014).

  6. 6.

    , & Layered LiNixCo1−2xMnxO2 cathode materials for lithium-ion batteries. Electrochem. Solid State Lett. 4, A200–A203 (2001).

  7. 7.

    , , , & Synthesis, structure, and electrochemical behavior of Li[NixLi1/3−2x/3Mn2/3−x/3]O2. J. Electrochem. Soc. 149, A778–A791 (2002).

  8. 8.

    et al. The significance of the Li2MnO3 component in ‘composite’ xLi2MnO3. (1-x)LiMn0.5Ni0.5O2 electrodes. Electrochem. Commun. 6, 1085–1091 (2004).

  9. 9.

    et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

  10. 10.

    et al. Origin of voltage decay in high-capacity layered oxide electrodes. Nat. Mater. 14, 230–238 (2015).

  11. 11.

    et al. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. Science 350, 1516–1521 (2015).

  12. 12.

    et al. Hyperhoneycomb Iridate β-Li2IrO3 as a platform for Kitaev magnetism. Phys. Rev. Lett. 114, 077202 (2015).

  13. 13.

    et al. Unconventional magnetic order on the hyperhoneycomb Kitaev lattice in β-Li2IrO3: full solution via magnetic resonant X-ray diffraction. Phys. Rev. B 90, 205116 (2014).

  14. 14.

    et al. Realization of a three-dimensional spin–anisotropic harmonic honeycomb iridate. Nat. Commun. 5, 4203 (2014).

  15. 15.

    , & Three-dimensional quantum spin liquids in models of harmonic-honeycomb iridates and phase diagram in an infinite- D approximation. Phys. Rev. B 90, 205126 (2014).

  16. 16.

    , & Unified theory of spiral magnetism in the harmonic-honeycomb iridates α, β, and γ Li2IrO3. Phys. Rev. B 91, 245134 (2015).

  17. 17.

    et al. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. J. Mater. Chem. 17, 3112–3125 (2007).

  18. 18.

    Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32, 751–767 (1976).

  19. 19.

    et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

  20. 20.

    et al. A new active Li–Mn–O compound for high energy density Li-ion batteries. Nat. Mater. 15, 173–177 (2015).

  21. 21.

    Design and chemical reactivity of low dimensional solids—some soft chemistry routes to new solids. Acs Symp. Ser. 499, 88–113 (1992).

  22. 22.

    Anion–cation redox competition and the formation of new compounds in highly covalent systems. Chem.-Eur. J. 2, 1053–1059 (1996).

  23. 23.

    The importance of anions in redox-type chimie douce. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A 310, 1–4 (1998).

  24. 24.

    High-resolution X-Ray photoemission spectrum of the valence bands of gold. Phys. Rev. B 5, 4709–4714 (1972).

  25. 25.

    Hartree–Slater subshell photoionization cross-sections at 1254 and 1487 eV. J. Electron Spectrosc. Relat. Phenom. 8, 129–137 (1976).

  26. 26.

    & Ab initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993).

  27. 27.

    & Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

  28. 28.

    , & Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

  29. 29.

    , , , & Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA + U study. Phys. Rev. B 57, 1505–1509 (1998).

  30. 30.

    , , & A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

  31. 31.

    , & Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

  32. 32.

    et al. ElAM: a computer program for the analysis and representation of anisotropic elastic properties. Comput. Phys. Commun. 181, 2102–2115 (2010).

Download references


The authors thank Q. Jacquet for fruitful discussions and V. Pomjakushin for his valuable help in neutron diffraction experiments. This work is based on experiments performed at the Swiss Spallation Neutron Source SINQ, Paul Scherrer Institute, Villigen, Switzerland. Use of the 11-BM mail service of the APS at Argonne National Laboratory was supported by the US Department of Energy under contract No. DE-AC02-06CH11357 and is greatly acknowledged. J.-M.T. acknowledges funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA. E.M. acknowledges financial support from the Fonds de Recherche du Québec—Nature et Technologies.

Author information


  1. Collège de France, Chimie du Solide et de l’Energie, UMR 8260, 11 Place Marcelin Berthelot, 75231 Paris Cedex 05, France

    • Paul E. Pearce
    • , Arnaud J. Perez
    • , Gwenaelle Rousse
    • , Dmitry Batuk
    • , Eric McCalla
    •  & Jean-Marie Tarascon
  2. Réseau sur le Stockage Electrochimique de l’Energie (RS2E), FR CNRS 3459, 80039 Amiens Cedex, France

    • Paul E. Pearce
    • , Arnaud J. Perez
    • , Gwenaelle Rousse
    • , Mathieu Saubanère
    • , Dominique Foix
    • , Eric McCalla
    • , Marie-Liesse Doublet
    •  & Jean-Marie Tarascon
  3. Sorbonne Universités—UPMC Univ Paris 06, 4 Place Jussieu, F-75005 Paris, France

    • Paul E. Pearce
    • , Arnaud J. Perez
    • , Gwenaelle Rousse
    •  & Jean-Marie Tarascon
  4. Institut Charles Gerhardt, UMR 5253, CNRS and Université de Montpellier, Place Eugène Bataillon, F-34095 Montpellier, France

    • Mathieu Saubanère
    •  & Marie-Liesse Doublet
  5. EMAT, University of Antwerp, Groenenborgerlaan 171, B-2020, Antwerp, Belgium

    • Dmitry Batuk
    • , Artem M. Abakumov
    •  & Gustaaf Van Tendeloo
  6. IPREM/ECP (UMR 5254), Université de Pau, 2 Avenue Pierre Angot, 64053 Pau Cedex 9, France

    • Dominique Foix
  7. CEMS, University of Minnesota, 421 Washington Avenue, Minneapolis, Minnesota 55455, USA

    • Eric McCalla
  8. Skolkovo Institute of Science and Technology, 3 Nobel Street, 143026 Moscow, Russia

    • Artem M. Abakumov


  1. Search for Paul E. Pearce in:

  2. Search for Arnaud J. Perez in:

  3. Search for Gwenaelle Rousse in:

  4. Search for Mathieu Saubanère in:

  5. Search for Dmitry Batuk in:

  6. Search for Dominique Foix in:

  7. Search for Eric McCalla in:

  8. Search for Artem M. Abakumov in:

  9. Search for Gustaaf Van Tendeloo in:

  10. Search for Marie-Liesse Doublet in:

  11. Search for Jean-Marie Tarascon in:


P.E.P. and J.-M.T. carried out the synthesis; P.E.P., A.J.P. and J.-M.T. did the electrochemical work; E.M. and G.R. conducted the structural analysis; M.S. and M.-L.D. did the DFT calculations; D.B., A.M.A. and G.V.T. did the TEM study; D.F. collected and analysed the XPS spectra; G.R. and J.-M.T. wrote the manuscript and all authors discussed the experiments and final manuscript.

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Jean-Marie Tarascon.

Supplementary information

PDF files

  1. 1.

    Supplementary Information

    Supplementary Information

Crystallographic information files

  1. 1.

    Supplementary Information

    Supplementary Information

  2. 2.

    Supplementary Information

    Supplementary Information

About this article

Publication history





Further reading