Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polysynthetic twinned TiAl single crystals for high-temperature applications

Abstract

TiAl alloys are lightweight, show decent corrosion resistance and have good mechanical properties at elevated temperatures, making them appealing for high-temperature applications. However, polysynthetic twinned TiAl single crystals fabricated by crystal-seeding methods face substantial challenges, and their service temperatures cannot be raised further. Here we report that Ti–45Al–8Nb single crystals with controlled lamellar orientations can be fabricated by directional solidification without the use of complex seeding methods. Samples with 0° lamellar orientation exhibit an average room temperature tensile ductility of 6.9% and a yield strength of 708 MPa, with a failure strength of 978 MPa due to the formation of extensive nanotwins during plastic deformation. At 900 °C yield strength remains high at 637 MPa, with 8.1% ductility and superior creep resistance. Thus, this TiAl single-crystal alloy could provide expanded opportunities for higher-temperature applications, such as in aeronautics and aerospace.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Optical micrographs of directionally solidified Ti–45Al–8Nb PST single crystals at different withdrawal rates.
Figure 2: Lamellar microstructure of a Ti–45Al–8Nb well-aligned PST single crystal before and after tensile test at ambient temperature.
Figure 3: Mechanical properties of Ti–45Al–8Nb PST single crystals as a function of temperature and the microstructure after tension.
Figure 4: Creep properties of well-aligned Ti–45Al–8Nb PST single crystals with the 0° lamellar orientation and the commercial Ti–48Al–2Cr–2Nb polycrystalline alloy at different stresses at 900 °C in air.

Similar content being viewed by others

References

  1. Liu, C. T. & Stiegler, J. O. Ductile ordered intermetallic alloys. Science 226, 636–642 (1984).

    Article  CAS  Google Scholar 

  2. Kear, B. H. & Thompson, E. R. Aircraft gas turbine materials and processes. Science 208, 847–856 (1980).

    Article  CAS  Google Scholar 

  3. Clemens, H. & Kestler, H. Processing and applications of intermetallic γ-TiAl-based alloys. Adv. Eng. Mater. 2, 551–570 (2000).

    Article  CAS  Google Scholar 

  4. Lasalmonie, A. Intermetallics: why is it so difficult to introduce them in gas turbine engines? Intermetallics 14, 1123–1129 (2006).

    Article  CAS  Google Scholar 

  5. Mukherji, D. et al. The effects of boron addition on the microstructure and mechanical properties of Co–Re-based high-temperature alloys. Scr. Mater. 66, 60–63 (2012).

    Article  CAS  Google Scholar 

  6. Bewlay, B. P., Weimer, M., Kelly, T., Suzuki, A. & Subramanian, P. R. The science, technology, and implementation of TiAl alloys in commercial aircraft engines. MRS Proc. 1516, 49–58 (2013).

    Article  Google Scholar 

  7. Taub, A. I. & Fleischer, R. L. Intermetallic compounds for high-temperature structural use. Science 243, 616–621 (1989).

    Article  CAS  Google Scholar 

  8. Perepezko, J. H. The hotter the engine, the better. Science 326, 1068–1069 (2009).

    Article  CAS  Google Scholar 

  9. Johnson, D. R., Inui, H. & Yamaguchi, M. Directional solidification and microstructural control of the TiAl/Ti3Al lamellar microstructure in TiAl–Si alloys. Acta Mater. 44, 2523–2535 (1996).

    Article  CAS  Google Scholar 

  10. Takeyama, M. et al. Lamellar boundary alignment of DS-processed TiAl–W alloys by a solidification procedure. Mater. Sci. Eng. A. 329–331, 7–12 (2002).

    Article  Google Scholar 

  11. Johnson, D. R., Masuda, Y., Inui, H. & Yamaguchi, M. Alignment of the TiAl/Ti3Al lamellar microstructure in TiAl alloys by growth from a seed material. Acta Mater. 45, 2523–2533 (1997).

    Article  CAS  Google Scholar 

  12. Yokoshima, S. & Yamaguchi, M. Fracture behavior and toughness of PST crystals of TiAl. Acta Mater. 44, 873–883 (1996).

    Article  CAS  Google Scholar 

  13. Yamaguchi, M., Johnson, D. R., Lee, H. N. & Inui, H. Directional solidification of TiAl-base alloys. Intermetallics 8, 511–517 (2000).

    Article  CAS  Google Scholar 

  14. Burgers, W. G. On the process of transition of the cubic-body-centered modification into the hexagonal-close-packed modification of zirconium. Physica 1, 561–586 (1934).

    Article  CAS  Google Scholar 

  15. Blackburn, M. J. The Science, Technology, and Application of Titanium (Pergamon, 1970).

    Google Scholar 

  16. Kim, M. C. et al. Composition and growth rate effects in directionally solidified TiAl alloys. Mater. Sci. Eng. A. 239–240, 570–576 (1997).

    Article  Google Scholar 

  17. Jung, I. S., Jang, H. S., Oh, M. H., Lee, J. H. & Wee, D. M. Microstructure control of TiAl alloys containing β stabilizers by directional solidification. Mater. Sci. Eng. A. 329–331, 13–18 (2002).

    Article  Google Scholar 

  18. Bramfitt, B. L. The effect of carbide and nitride additions on the heterogeneous nucleation behavior of liquid iron. Metall. Trans. 1, 1987–1995 (1970).

    Article  CAS  Google Scholar 

  19. Porter, D. A., Easterling, K. E. & Sherif, M. Y. Phase Transformations in Metals and Alloys 3rd edn (CRC Press, 2009).

    Google Scholar 

  20. Elliott, A. J. et al. Directional solidification of large superalloy castings with radiation and liquid-metal cooling: a comparative assessment. Metall. Mater. Trans. A 35, 3221–3231 (2004).

    Article  Google Scholar 

  21. Kim, Y. W. Ordered intermetallic alloys, part III: gamma titanium aluminides. JOM 7, 30–39 (1994).

    Article  Google Scholar 

  22. Appel, F., Oehring, M. & Paul, J. D. H. A novel in situ composite structure in TiAl alloys. Mater. Sci. Eng. A 493, 232–236 (2008).

    Article  Google Scholar 

  23. Yuan, Y. et al. Dissociation of super-dislocations and the stacking fault energy in TiAl based alloys with Nb-doping. Phys. Lett. A 358, 231–235 (2006).

    Article  CAS  Google Scholar 

  24. Paul, J. D. H., Appel, F. & Wagner, R. The compression behavior of niobium alloyed γ-titanium aluminides. Acta Mater. 46, 1075–1085 (1998).

    Article  CAS  Google Scholar 

  25. Chen, G. L. & Zhang, L. C. Deformation mechanism at large strains in a high-Nb-containing TiAl at room temperature. Mater. Sci. Eng. A 329–331, 163–170 (2002).

    Article  Google Scholar 

  26. Lu, L., Shen, Y. F., Chen, X. H., Qian, L. H. & Lu, K. Ultrahigh strength and high electrical conductivity in copper. Science 304, 422–426 (2004).

    Article  CAS  Google Scholar 

  27. Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).

    Article  CAS  Google Scholar 

  28. Li, X., Wei, Y., Lu, L., Lu, K. & Gao, H. J. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464, 877–880 (2010).

    Article  CAS  Google Scholar 

  29. Chen, K. C., Wu, W. W., Liao, C. N., Chen, L. J. & Tu, K. N. Observation of atomic diffusion at twin-modified grain boundaries in copper. Science 321, 1066–1069 (2008).

    Article  CAS  Google Scholar 

  30. Hsiao, H. Y. et al. Unidirectional growth of microbumps on (111)-oriented and nanotwinned copper. Science 336, 1107–1010 (2012).

    Article  Google Scholar 

  31. Wang, J. G., Zhang, L. C., Chen, G. L. & Ye, H. Q. Deformation-induced γ ↔ α2 phase transformation in a hot-forged Ti–45Al–10Nb alloy. Mater. Sci. Eng. A 252, 222–231 (1998).

    Article  Google Scholar 

  32. Liu, C. T. & Maziasz, P. J. Microstructural control and mechanical properties of dual-phase TiAl alloys. Intermetallics 6, 653–661 (1998).

    Article  CAS  Google Scholar 

  33. Tsujimoto, T., Hashimoto, K. & Nobuki, M. Alloy design for improvement of ductility and workability of alloys based on intermetallic compound TiAl. Mater. Trans. JIM 33, 989–1003 (1992).

    Article  CAS  Google Scholar 

  34. Hanamura, T., Uemori, R. & Tanino, M. Mechanism of plastic deformation of Mn-added TiAl L10-type intermetallic compound. J. Mater. Res. 3, 656–664 (1988).

    Article  CAS  Google Scholar 

  35. Heilmaier, M., Handtrack, D. & Varin, R. A. Creep properties of boron-doped dual-phase Ti-rich L12-based trialuminide intermetallics. Scr. Mater. 48, 1409–1414 (2003).

    Article  CAS  Google Scholar 

  36. Rohatgi, A., Vecchio, K. S. & Iii, G. T. G. The influence of stacking fault energy on the mechanical behavior of Cu and Cu–Al alloys: deformation twinning, work hardening, and dynamic recovery. Metall. Mater. Trans. A 32, 135–145 (2001).

    Article  Google Scholar 

  37. Zhang, W. J., Liu, Z. C., Chen, G. L. & Kim, Y. W. Deformation mechanisms in a high-Nb containing γ–TiAl alloy at 900 °C. Mater. Sci. Eng. A 271, 416–413 (1999).

    Article  Google Scholar 

  38. Appel, F., Paul, J. D. H. & Oehring, M. Gamma Titanium Aluminide Alloys: Science and Technology 1st edn (Wiley-VCH, 2011).

    Book  Google Scholar 

  39. Sastry, S. M. L. & Lipsitt, H. A. Fatigue deformation of TiAl base alloys. Metall. Mater. Trans. A 8, 299–308 (1977).

    Article  Google Scholar 

  40. Larsen, J. M. Assuring reliability of gamma titanium aluminides in long-term service. In Gamma Titanium Aluminides (eds Kim, Y.-W. et al.) 463–472 (TMS, 1999).

    Google Scholar 

  41. Balsone, S. J., Wayne, J. J. & Maxwell, D. C. Fatigue crack growth in a cast gamma titanium aluminide between 25 and 954 °C. In Fatigue and Fracture of Ordered Intermetallics Materials (eds Soboyejo, W. et al.) 307–318 (TMS, 1994).

    Google Scholar 

  42. Chan, K. S. & Shih, D. S. Fundamental aspects of fatigue and fracture in a TiAl sheet alloy. Metall. Mater. Trans. A 29, 73–87 (1998).

    Article  Google Scholar 

  43. Hénaff, G. & Gloanec, A. L. Fatigue properties of TiAl alloys. Intermetallic 13, 543–558 (2005).

    Article  Google Scholar 

  44. Dahms, M. Gamma titanium aluminide research and applications in Germany and Austria. Adv. Perform. Mater. 1, 157–182 (1994).

    Article  CAS  Google Scholar 

  45. Gloanec, A. L., Hénaff, G., Bertheau, D., Belaygue, P. & Grange, M. Fatigue crack growth behaviour of a gamma-titanium-aluminide alloy prepared by casting and powder metallurgy. Scr. Mater. 49, 825–830 (2003).

    Article  CAS  Google Scholar 

  46. Sadananda, K. & Vasudevan, A. K. Fatigue crack growth behaviour in titanium aluminides. Mater. Sci. Eng. A 192–193, 490–501 (1995).

    Article  Google Scholar 

  47. Rao, K. T. V., Kim, Y. W., Muhlstein, C. L. & Ritchie, R. O. Fatigue-crack growth and fracture resistance of a two-phase (γ + α2) TiAl alloy in duplex and lamellar microstructures. Mater. Sci. Eng. A 192–193, 474–482 (1995).

    Google Scholar 

  48. Recina, V., Lundström, D. & Karlsson, B. Tensile, creep, and low-cycle fatigue behavior of a cast γ-TiAl-based alloy for gas turbine applications. Metall. Mater. Trans. A 33, 2869–2881 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for financial support from the National Key Basic Research Program of China (grant 2011CB605504), and a Project Funded by PAPD of Jiangsu Higher Education Institutions. We thank F. T. Kong, X.-Q. Chen, Y. Chen, G. D. Tang, H. Nan, J. C. Li and X. Y. Cheng for beneficial discussions. C.T.L. was supported by internal funding from City University of Hong Kong, Kowloon, Hong Kong.

Author information

Authors and Affiliations

Authors

Contributions

G.C. designed and supervised the project. Y.B.P. synthesized the PST samples. G.Z. conducted the quantitative calculation of the anisotropy of interfacial energy. Z.X.Q. and M.Z.W. performed experiments and analysed the data. H.C.Y. and C.L.D. performed high-temperature mechanical tests. C.T.L. assessed the outcomes. G.C., Y.B.P., G.Z., Z.X.Q., M.Z.W. and C.T.L. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Guang Chen or C. T. Liu.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 895 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, G., Peng, Y., Zheng, G. et al. Polysynthetic twinned TiAl single crystals for high-temperature applications. Nature Mater 15, 876–881 (2016). https://doi.org/10.1038/nmat4677

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4677

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing