Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces

Abstract

Silicon-based materials have widespread application as biophysical tools and biomedical devices. Here we introduce a biocompatible and degradable mesostructured form of silicon with multi-scale structural and chemical heterogeneities. The material was synthesized using mesoporous silica as a template through a chemical vapour deposition process. It has an amorphous atomic structure, an ordered nanowire-based framework and random submicrometre voids, and shows an average Young’s modulus that is 2–3 orders of magnitude smaller than that of single-crystalline silicon. In addition, we used the heterogeneous silicon mesostructures to design a lipid-bilayer-supported bioelectric interface that is remotely controlled and temporally transient, and that permits non-genetic and subcellular optical modulation of the electrophysiology dynamics in single dorsal root ganglia neurons. Our findings suggest that the biomimetic expansion of silicon into heterogeneous and deformable forms can open up opportunities in extracellular biomaterial or bioelectric systems.

Your institute does not have access to this article

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Amorphous Si can have multi-scale structural heterogeneity and ordered mesoscale features.
Figure 2: Mesostructured Si has size-dependent chemical heterogeneity.
Figure 3: Mesostructured Si can establish less invasive biointerfaces.
Figure 4: Remotely actuated and lipid-supported bioelectric interface as a dynamic hybrid system.

References

  1. Leigh, C. Handbook of Porous Silicon 1st edn (Springer, 2014).

    Google Scholar 

  2. Sailor, M. J. Porous Silicon in Practice: Preparation, Characterization, and Applications (Wiley-VCH, 2012).

    Google Scholar 

  3. Kim, D.-H., Ghaffari, R., Lu, N. S. & Rogers, J. A. Flexible and stretchable electronics for biointegrated devices. Annu. Rev. Biomed. Eng. 14, 113–128 (2012).

    CAS  Article  Google Scholar 

  4. Tian, B. Z. & Lieber, C. M. Synthetic nanoelectronic probes for biological cells and tissues. Annu. Rev. Anal. Chem. 6, 31–51 (2013).

    CAS  Article  Google Scholar 

  5. Cogan, S. F. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10, 275–309 (2008).

    CAS  Article  Google Scholar 

  6. Tasciotti, E. et al. Mesoporous silicon particles as a multistage delivery system for imaging and therapeutic applications. Nature Nanotech. 3, 151–157 (2008).

    CAS  Article  Google Scholar 

  7. Chiappini, C. et al. Biodegradable silicon nanoneedles delivering nucleic acids intracellularly induce localized in vivo neovascularization. Nature Mater. 14, 532–539 (2015).

    CAS  Article  Google Scholar 

  8. Gu, L. et al. In vivo time-gated fluorescence imaging with biodegradable luminescent porous silicon nanoparticles. Nature Commun. 4, 2326 (2013).

    Article  Google Scholar 

  9. Kim, W., Ng, J. K., Kunitake, M. E., Conklin, B. R. & Yang, P. Interfacing silicon nanowires with mammalian cells. J. Am. Chem. Soc. 129, 7228–7229 (2007).

    CAS  Article  Google Scholar 

  10. Hwang, S.-W. et al. A physically transient form of silicon electronics. Science 337, 1640–1644 (2012).

    CAS  Article  Google Scholar 

  11. Park, J.-H. et al. Biodegradable luminescent porous silicon nanoparticles for in vivo applications. Nature Mater. 8, 331–336 (2009).

    CAS  Article  Google Scholar 

  12. Kim, D.-H. et al. Dissolvable films of silk fibroin for ultrathin conformal bio-integrated electronics. Nature Mater. 9, 511–517 (2010).

    CAS  Article  Google Scholar 

  13. Liu, J. et al. Syringe-injectable electronics. Nature Nanotech. 10, 629–636 (2015).

    CAS  Article  Google Scholar 

  14. Zhang, A. Q. & Lieber, C. M. Nano-bioelectronics. Chem. Rev. 116, 215–257 (2016).

    CAS  Article  Google Scholar 

  15. Zimmerman, J. F. et al. Free-standing kinked silicon nanowires for probing inter- and intracellular force dynamics. Nano Lett. 15, 5492–5498 (2015).

    CAS  Article  Google Scholar 

  16. Wegst, U. G. K., Bai, H., Saiz, E., Tomsia, A. P. & Ritchie, R. O. Bioinspired structural materials. Nature Mater. 14, 23–36 (2015).

    CAS  Article  Google Scholar 

  17. Chomski, E. & Ozin, G. A. Panoscopic silicon—a material for ‘all’ length scales. Adv. Mater. 12, 1071–1078 (2000).

    CAS  Article  Google Scholar 

  18. Bao, Z. H. et al. Chemical reduction of three-dimensional silica micro-assemblies into microporous silicon replicas. Nature 446, 172–175 (2007).

    CAS  Article  Google Scholar 

  19. Dai, F. et al. Bottom-up synthesis of high surface area mesoporous crystalline silicon and evaluation of its hydrogen evolution performance. Nature Commun. 5, 3605 (2014).

    Article  Google Scholar 

  20. Hochbaum, A. I., Gargas, D., Hwang, Y. J. & Yang, P. Single crystalline mesoporous silicon nanowires. Nano Lett. 9, 3550–3554 (2009).

    CAS  Article  Google Scholar 

  21. Qu, Y. et al. Electrically conductive and optically active porous silicon nanowires. Nano Lett. 9, 4539–4543 (2009).

    CAS  Article  Google Scholar 

  22. Li, X. & Bohn, P. W. Metal-assisted chemical etching in HF/H(2)O(2) produces porous silicon. Appl. Phys. Lett. 77, 2572–2574 (2000).

    CAS  Article  Google Scholar 

  23. Gordon, L. M. et al. Amorphous intergranular phases control the properties of rodent tooth enamel. Science 347, 746–750 (2015).

    CAS  Article  Google Scholar 

  24. Ott, H. C. et al. Perfusion-decellularized matrix: using nature’s platform to engineer a bioartificial heart. Nature Med. 14, 213–221 (2008).

    CAS  Article  Google Scholar 

  25. Gu, D. & Schuth, F. Synthesis of non-siliceous mesoporous oxides. Chem. Soc. Rev. 43, 313–344 (2014).

    CAS  Article  Google Scholar 

  26. Wan, Y., Yang, H. F. & Zhao, D. Y. “Host-guest” chemistry in the synthesis of ordered nonsiliceous mesoporous materials. Acc. Chem. Res. 39, 423–432 (2006).

    CAS  Article  Google Scholar 

  27. Arora, H. et al. Block copolymer self-assembly-directed single-crystal homo- and heteroepitaxial nanostructures. Science 330, 214–219 (2010).

    CAS  Article  Google Scholar 

  28. Joo, S. H. et al. Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169–172 (2001).

    CAS  Article  Google Scholar 

  29. Zhao, D. Y. et al. Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279, 548–552 (1998).

    CAS  Article  Google Scholar 

  30. Richman, E. K., Kang, C. B., Brezesinski, T. & Tolbert, S. H. Ordered mesoporous silicon through magnesium reduction of polymer templated silica thin films. Nano Lett. 8, 3075–3079 (2008).

    CAS  Article  Google Scholar 

  31. Tanaka, K., Maruyama, E., Shimada, T. & Okamoto, H. Amorphous Silicon 1st edn (Wiley, 1999).

    Google Scholar 

  32. Freund, L. B. & Suresh, S. Thin Film Materials: Stress, Defect Formation and Surface Evolution 1st edn (Cambridge Univ. Press, 2009).

    Google Scholar 

  33. Imperor-Clerc, M., Davidson, P. & Davidson, A. Existence of a microporous corona around the mesopores of silica-based SBA-15 materials templated by triblock copolymers. J. Am. Chem. Soc. 122, 11925–11933 (2000).

    CAS  Article  Google Scholar 

  34. Minev, I. R. et al. Electronic dura mater for long-term multimodal neural interfaces. Science 347, 159–163 (2015).

    CAS  Article  Google Scholar 

  35. Lanzani, G. Materials for bioelectronics: organic electronics meets biology. Nature Mater. 13, 775–776 (2014).

    CAS  Article  Google Scholar 

  36. Gautieri, A., Vesentini, S., Redaelli, A. & Buehler, M. J. Hierarchical structure and nanomechanics of collagen microfibrils from the atomistic scale up. Nano Lett. 11, 757–766 (2011).

    CAS  Article  Google Scholar 

  37. Picas, L., Rico, F. & Scheuring, S. Direct measurement of the mechanical properties of lipid phases in supported bilayers. Biophys. J. 102, L1–L3 (2012).

    Article  Google Scholar 

  38. Han, D. X., Lorentzen, J. D., Weinberg-Wolf, J., McNeil, L. E. & Wang, Q. Raman study of thin films of amorphous-to-microcrystalline silicon prepared by hot-wire chemical vapor deposition. J. Appl. Phys. 94, 2930–2936 (2003).

    CAS  Article  Google Scholar 

  39. Li, L. et al. Multifunctionality of chiton biomineralized armor with an integrated visual system. Science 350, 952–956 (2015).

    CAS  Article  Google Scholar 

  40. Shapiro, M. G., Homma, K., Villarreal, S., Richter, C. P. & Bezanilla, F. Infrared light excites cells by changing their electrical capacitance. Nature Commun. 3, 736 (2012).

    Article  Google Scholar 

  41. Carvalho-de-Souza, J. L. et al. Photosensitivity of neurons enabled by cell-targeted gold nanoparticles. Neuron 86, 207–217 (2015).

    CAS  Article  Google Scholar 

  42. Sanders, A. W., Jeerage, K. M., Schwartz, C. L., Curtin, A. E. & Chiaramonti, A. N. Gold nanoparticle quantitation by whole cell tomography. ACS Nano 9, 11792–11799 (2015).

    CAS  Article  Google Scholar 

  43. Liu, Y. et al. Dopamine-melanin colloidal nanospheres: an efficient near-infrared photothermal therapeutic agent for in vivo cancer therapy. Adv. Mater. 25, 1353–1359 (2013).

    CAS  Article  Google Scholar 

  44. Kaplan, D. T. et al. Subthreshold dynamics in periodically stimulated squid giant axons. Phys. Rev. Lett. 76, 4074–4077 (1996).

    CAS  Article  Google Scholar 

  45. Liu, Y., Ai, K. & Lu, L. Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields. Chem. Rev. 114, 5057–5115 (2014).

    CAS  Article  Google Scholar 

  46. Pan, L. et al. Hierarchical nanostructured conducting polymer hydrogel with high electrochemical activity. Proc. Natl Acad. Sci. USA 109, 9287–9292 (2012).

    CAS  Article  Google Scholar 

  47. Ghezzi, D. et al. A hybrid bioorganic interface for neuronal photoactivation. Nature Commun. 2, 166 (2011).

    Article  Google Scholar 

  48. Tee, B. C. K. et al. A skin-inspired organic digital mechanoreceptor. Science 350, 313–316 (2015).

    CAS  Article  Google Scholar 

  49. Tian, B. Z. et al. Macroporous nanowire nanoelectronic scaffolds for synthetic tissues. Nature Mater. 11, 986–994 (2012).

    CAS  Google Scholar 

  50. Karzbrun, E., Tayar, A. M., Noireaux, V. & Bar-Ziv, R. H. Programmable on-chip DNA compartments as artificial cells. Science 345, 829–832 (2014).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Air Force Office of Scientific Research (AFOSR FA9550-14-1-0175, FA9550-15-1-0285), the National Science Foundation (NSF CAREER, DMR-1254637; NSF MRSEC, DMR 1420709), the Searle Scholars Foundation, the National Institutes of Health (NIH GM030376), and the University of Chicago Start-up Fund. Atom-probe tomography was performed at the Northwestern University Center for Atom-Probe Tomography (NUCAPT), whose APT was purchased and upgraded with funding from NSF-MRI (DMR-0420532) and ONR-DURIP (N00014-0400798, N00014-0610539, N00014-0910781) grants. NUCAPT is a Research Facility at the Materials Research Center of Northwestern University, supported by the National Science Foundation’s MRSEC programme (grant number DMR-1121262). Instrumentation at NUCAPT was further upgraded by the Initiative for Sustainability and Energy at Northwestern (ISEN). This work made use of the JEOL JEM-ARM200CF and JEOL JEM-3010 TEM in the Electron Microscopy Service (Research Resources Center, UIC). The acquisition of the UIC JEOL JEM-ARM200CF was supported by an MRI-R2 grant from the National Science Foundation (DMR-0959470). A portion of this work was performed at the Center for Nanoscale Materials, a US Department of Energy, Office of Science, Office of Basic Energy Sciences User Facility under Contract No. DE-AC02-06CH11357. This research used the resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under Contract No. DE-AC02-06CH11357. The authors thank D. Talapin, V. Srivastava, Y. Chen, J. Treger, T. Sun, Q. Guo, J. Jureller and R. N. S. Divan for providing technical support and stimulating discussions.

Author information

Authors and Affiliations

Authors

Contributions

Y.J. provided material design and synthesis. J.L.C.-d.-S. conducted lipid and neuron experiments Y.J., R.C.S.W., Z.L., D.I., X.Z., A.W.N., I.W.J., D.-J.L., Y.W., V.D.A., X.X., L.N. and D.N.S. performed material characterizations. Y.J., J.Y., R.C.S.W., D.E.W. and X.W. conducted biocompatibility and degradability studies in vitro and in vivo. Y.J. and R.C.S.W. carried out material data analysis. J.L.C.-d.-S., R.C.S.W., Y.J. and L.N. performed lipid and cell data analysis. Y.J. performed the COMSOL simulation. Y.J., R.C.S.W. and B.T. wrote the paper, and received comments and edits from all authors. B.T. and F.B. mentored the research.

Corresponding authors

Correspondence to Francisco Bezanilla or Bozhi Tian.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 4813 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Carvalho-de-Souza, J., Wong, R. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nature Mater 15, 1023–1030 (2016). https://doi.org/10.1038/nmat4673

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4673

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing