Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Epitaxial-strain-induced polar-to-nonpolar transitions in layered oxides

Abstract

Epitaxial strain can induce collective phenomena and new functionalities in complex oxide thin films. Strong coupling between strain and polar lattice modes can stabilize new ferroelectric phases from nonpolar dielectrics or enhance electric polarizations and Curie temperatures1. Recently, strain has also been exploited to induce novel metal–insulator transitions2,3 and magnetic reconstructions4,5,6,7 through its coupling to nonpolar modes, including rotations of BO6 transition-metal octahedra8. Although large strains are thought to induce ferroelectricity, here we demonstrate a polar-to-nonpolar transition in (001) films of layered A3B2O7 hybrid-improper ferroelectrics with experimentally accessible biaxial strains. We show the origin of the transition originates from the interplay of trilinear-related lattice mode interactions active in the layered oxides, and those interactions are directly strain tunable. Our results call for a careful re-examination of the role of strain–polarization coupling in ferroelectric films with nontrivial anharmonicities and offer a route to search for new functionalities in layered oxides.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Strain dependence of the structure stability and electric polarization for (001) Ca3Ti2O7 films.
Figure 2: Local and crystal structure evolution in Ca3Ti2O7 with biaxial strain.
Figure 3: Origin of the P–NP transitions with biaxial strain.

Similar content being viewed by others

References

  1. Schlom, D. G. et al. Elastic strain engineering of ferroic oxides. MRS Bull. 39, 118–130 (2014).

    Article  CAS  Google Scholar 

  2. Jang, H. W. et al. Metallic and insulating oxide interfaces controlled by electronic correlations. Science 331, 886–889 (2011).

    Article  CAS  Google Scholar 

  3. Zhang, J. Y. et al. Correlation between metal-insulator transitions and structural distortions in high-electron-density SrTiO3 quantum wells. Phys. Rev. B 89, 075140 (2014).

    Article  Google Scholar 

  4. Lee, J. H. & Rabe, K. M. Epitaxial-strain-induced multiferroicity in SrMnO3 from first principles. Phys. Rev. Lett. 104, 207204 (2010).

    Article  Google Scholar 

  5. Zhai, X. et al. Correlating interfacial octahedral rotations with magnetism in (LaMnO3+δ)N/(SrTiO3)N superlattices. Nature Commun. 5, 4283 (2014).

    Article  CAS  Google Scholar 

  6. Moon, E. J. et al. Spatial control of functional properties via octahedral modulations in complex oxide superlattices. Nature Commun. 5, 5710 (2014).

    Article  CAS  Google Scholar 

  7. Lu, W. et al. Strain engineering of octahedral rotations and physical properties of SrRuO3 films. Sci. Rep. 5, 10245 (2015).

    Article  Google Scholar 

  8. Rondinelli, J. M., May, S. J. & Freeland, J. W. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37, 261–270 (2012).

    Article  CAS  Google Scholar 

  9. Prosandeev, S., Kornev, I. A. & Bellaiche, L. Phase transitions in epitaxial ( ) BiFeO3 films from first principles. Phys. Rev. Lett. 107, 117602 (2011).

    Article  CAS  Google Scholar 

  10. Haumont, R. et al. Effect of high pressure on multiferroic BiFeO3 . Phys. Rev. B 79, 184110 (2009).

    Article  Google Scholar 

  11. Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization–magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Article  Google Scholar 

  12. Benedek, N. A., Mulder, A. T. & Fennie, C. J. Polar octahedral rotations: a path to new multifunctional materials. J. Solid State Chem. 195, 11–20 (2012).

    Article  CAS  Google Scholar 

  13. Young, J., Stroppa, A., Picozzi, S. & Rondinelli, J. M. Anharmonic lattice interactions in improper ferroelectrics for multiferroic design. J. Phys. Condens. Matter 27, 283202 (2015).

    Article  Google Scholar 

  14. Bellaiche, L. & Íñiguez, J. Universal collaborative couplings between oxygen-octahedral rotations and antiferroelectric distortions in perovskites. Phys. Rev. B 88, 014104 (2013).

    Article  Google Scholar 

  15. Harris, A. B. Symmetry analysis for the Ruddlesden–Popper systems Ca3Mn2O7 and Ca3Ti2O7 . Phys. Rev. B 84, 064116 (2011).

    Article  Google Scholar 

  16. Mulder, A. T., Benedek, N. A., Rondinelli, J. M. & Fennie, C. J. Turning ABO3 antiferroelectrics into ferroelectrics: design rules for practical rotation-driven ferroelectricity in double perovskites and A3B2O7 Ruddlesden–Popper compounds. Adv. Funct. Mater. 23, 4810–4820 (2013).

    CAS  Google Scholar 

  17. Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y. & Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca, Sr)3Ti2O7 crystals. Nature Mater. 14, 407–413 (2015).

    Article  CAS  Google Scholar 

  18. Senn, M. S. et al. Negative thermal expansion in hybrid improper ferroelectric ruddlesden-popper perovskites by symmetry trapping. Phys. Rev. Lett. 114, 035701 (2015).

    Article  CAS  Google Scholar 

  19. Liu, X. Q. et al. Hybrid improper ferroelectricity in Ruddlesden-Popper Ca3(Ti, Mn)2O7 ceramics. Appl. Phys. Lett. 106, 202903 (2015).

    Article  Google Scholar 

  20. Zayak, A. T., Huang, X., Neaton, J. B. & Rabe, K. M. Structural, electronic, and magnetic properties of SrRuO3 under epitaxial strain. Phys. Rev. B 74, 094104 (2006).

    Article  Google Scholar 

  21. Johnson-Wilke, R. L. et al. Quantification of octahedral rotations in strained LaAlO3 films via synchrotron x-ray diffraction. Phys. Rev. B 88, 174101 (2013).

    Article  Google Scholar 

  22. Rondinelli, J. M. & Coh, S. Large isosymmetric reorientation of oxygen octahedra rotation axes in epitaxially strained perovskites. Phys. Rev. Lett. 106, 235502 (2011).

    Article  Google Scholar 

  23. Aguado-Puente, P., García-Fernández, P. & Junquera, J. Interplay of couplings between antiferrodistortive, ferroelectric, and strain degrees of freedom in monodomain PbTiO3/SrTiO3 superlattices. Phys. Rev. Lett. 107, 217601 (2011).

    Article  Google Scholar 

  24. May, S. J. et al. Quantifying octahedral rotations in strained perovskite oxide films. Phys. Rev. B 82, 014110 (2010).

    Article  Google Scholar 

  25. Hatt, A. J. & Spaldin, N. A. Structural phases of strained laalo3 driven by octahedral tilt instabilities. Phys. Rev. B 82, 195402 (2010).

    Article  Google Scholar 

  26. Hwang, J., Zhang, J. Y., Son, J. & Stemmer, S. Nanoscale quantification of octahedral tilts in perovskite films. Appl. Phys. Lett. 100, 191909 (2012).

    Article  Google Scholar 

  27. Coh, S. et al. Si-compatible candidates for high-κ dielectrics with the Pbnm perovskite structure. Phys. Rev. B 82, 064101 (2010).

    Article  Google Scholar 

  28. Lee, C.-H. et al. Exploiting dimensionality and defect mitigation to create tunable microwave dielectrics. Nature 502, 532–536 (2013).

    Article  CAS  Google Scholar 

  29. Lee, J. H. et al. Dynamic layer rearrangement during growth of layered oxide films by molecular beam epitaxy. Nature Mater. 13, 879–883 (2014).

    Article  CAS  Google Scholar 

  30. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  31. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  32. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  33. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Google Scholar 

  34. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  35. Meyer, B. & Vanderbilt, D. Ab initio study of ferroelectric domain walls in PbTiO3 . Phys. Rev. B 65, 104111 (2002).

    Article  Google Scholar 

  36. Lu, X., Gong, X. & Xiang, H. Polarization enhancement in perovskite superlattices by oxygen octahedral tilts. Comput. Mater. Sci. 91, 310–314 (2014).

    Article  CAS  Google Scholar 

  37. Stokes, H. T., Hatch, D. M. & Wells, J. D. Group-theoretical methods for obtaining distortions in crystals: applications to vibrational modes and phase transitions. Phys. Rev. B 43, 11010–11018 (1991).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank L.-F. Huang for helpful discussions. X.-Z.L. and J.M.R. were supported by the National Science Foundation (NSF) through the Pennsylvania State University MRSEC under award number DMR-1420620. DFT calculations were performed on the CARBON cluster at the Center for Nanoscale Materials [Argonne National Laboratory, supported by DOE-BES (DE-AC02-06CH11357)], the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by NSF (ACI-1053575), and the DoD Supercomputing Resource Centers supported by the High Performance Computing and Modernization Program of the DOD.

Author information

Authors and Affiliations

Authors

Contributions

The study was planned, calculations carried out, and the manuscript prepared by X.-Z.L. and J.M.R. Both authors discussed the results, wrote, and commented on the manuscript.

Corresponding author

Correspondence to James M. Rondinelli.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 2597 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, XZ., Rondinelli, J. Epitaxial-strain-induced polar-to-nonpolar transitions in layered oxides. Nature Mater 15, 951–955 (2016). https://doi.org/10.1038/nmat4664

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4664

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing