Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2


Understanding the kinetics of shock-compressed SiO2 is of great importance for mitigating optical damage for high-intensity lasers and for understanding meteoroid impacts. Experimental work has placed some thermodynamic bounds on the formation of high-pressure phases of this material, but the formation kinetics and underlying microscopic mechanisms are yet to be elucidated. Here, by employing multiscale molecular dynamics studies of shock-compressed fused silica and quartz, we find that silica transforms into a poor glass former that subsequently exhibits ultrafast crystallization within a few nanoseconds. We also find that, as a result of the formation of such an intermediate disordered phase, the transition between silica polymorphs obeys a homogeneous reconstructive nucleation and grain growth model. Moreover, we construct a quantitative model of nucleation and grain growth, and compare its predictions with stishovite grain sizes observed in laser-induced damage and meteoroid impact events.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Time evolution of powder X-ray diffraction pattern behind the shock front.
Figure 2: Computed powder X-ray diffraction patterns of the MD simulations at 5 ns.
Figure 3: Views of shocked fused silica of 486,000 atoms at three different stages.
Figure 4: Time evolution of stishovite formation.
Figure 5: MD results of shock Hugoniot for fused silica and quartz.
Figure 6: Homogeneous nucleation and grain growth MD results and model.


  1. 1

    Chao, E. C. T., Fahey, J. J., Littler, J. & Milton, D. J. Stishovite, SiO2, a very high pressure new mineral from Meteor Crater, Arizona. J. Geophys. Res. 67, 419–421 (1962).

    CAS  Article  Google Scholar 

  2. 2

    Goresy, A. E., Dubrovinsky, L., Sharp, T. G., Saxena, S. K. & Chen, M. A monoclinic post-stishovite polymorph of silica in the Shergotty meteorite. Science 288, 1632–1634 (2000).

    Article  Google Scholar 

  3. 3

    Miyahara, M. et al. Discovery of seifertite in a shocked lunar meteorite. Nature Commun. 4, 1737 (2013).

    Article  Google Scholar 

  4. 4

    Carr, C. W., Radousky, H. B., Rubenchik, A. M., Feit, M. D. & Demos, S. G. Localized dynamics during laser-induced damage in optical materials. Phys. Rev. Lett. 92, 087401 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Kubota, A., Caturla, M.-J., Stolken, J. & Feit, M. Densification of fused silica due to shock waves and its implications for 351 nm laser induced damage. Opt. Express 8, 611–616 (2001).

    CAS  Article  Google Scholar 

  6. 6

    Salleo, A. et al. Laser-driven formation of a high-pressure phase in amorphous silica. Nature Mater. 2, 796–800 (2003).

    CAS  Article  Google Scholar 

  7. 7

    Tien, A.-C., Backus, S., Kapteyn, H., Murnane, M. & Mourou, G. Short-pulse laser damage in transparent materials as a function of pulse duration. Phys. Rev. Lett. 82, 3883–3886 (1999).

    CAS  Article  Google Scholar 

  8. 8

    Wackerle, J. Shock-wave compression of quartz. J. Appl. Phys. 33, 922–937 (1962).

    CAS  Article  Google Scholar 

  9. 9

    McQueen, R. G., Fritz, J. N. & Marsh, S. P. On the equation of state of stishovite. J. Geophys. Res. 68, 2319–2322 (1963).

    CAS  Article  Google Scholar 

  10. 10

    Sugiura, H., Kondo, K. & Sawaoka, A. Shock temperatures in fused silica measured by optical technique. J. Appl. Phys. 53, 4512–4514 (1982).

    CAS  Article  Google Scholar 

  11. 11

    Lyzenga, G. A., Ahrens, T. J. & Mitchell, A. C. Shock temperatures of SiO2 and their geophysical implications. J. Geophys. Res. 88, 2431–2444 (1983).

    CAS  Article  Google Scholar 

  12. 12

    Carli, P. S. D. & Milton, D. J. Stishovite: Synthesis by shock wave. Science 147, 144–145 (1965).

    Article  Google Scholar 

  13. 13

    Duvall, G. E. & Graham, R. A. Phase transitions under shock-wave loading. Rev. Mod. Phys. 49, 523–579 (1977).

    CAS  Article  Google Scholar 

  14. 14

    Kadau, K., Germann, T. C., Lomdahl, P. S. & Holian, B. L. Microscopic view of structural phase transitions induced by shock waves. Science 296, 1681–1684 (2002).

    CAS  Article  Google Scholar 

  15. 15

    Erskine, D. J. & Nellis, W. J. Shock-induced martensitic phase transformation of oriented graphite to diamond. Nature 349, 317–319 (1991).

    CAS  Article  Google Scholar 

  16. 16

    Kimminau, G., Erhart, P., Bringa, E. M., Remington, B. & Wark, J. S. Phonon instabilities in uniaxially compressed fcc metals as seen in molecular dynamics simulations. Phys. Rev. B 81, 092102 (2010).

    Article  Google Scholar 

  17. 17

    Brazhkin, V. V. et al. Martensitic transition in single-crystalline α-GeO2 at compression. J. Exp. Theor. Phys. Lett. 71, 293–297 (2000).

    CAS  Article  Google Scholar 

  18. 18

    Usui, Y. & Tsuchiya, T. Ab initio two-phase molecular dynamics on the melting curve of SiO2 . J. Earth Sci. 21, 801–810 (2010).

    CAS  Article  Google Scholar 

  19. 19

    Hemley, R. J., Jephcoat, A. P., Mao, H. K., Ming, L. C. & Manghnani, M. H. Pressure-induced amorphization of crystalline silica. Nature 334, 52–54 (1988).

    CAS  Article  Google Scholar 

  20. 20

    Schneider, H. Infrared spectroscopic studies of experimentally shock-loaded quartz. Meteoritics 13, 227–234 (1978).

    CAS  Article  Google Scholar 

  21. 21

    Gregoryanz, E., Hemley, R. J., Mao, H. & Gillet, P. High-pressure elasticity of α-quartz: Instability and ferroelastic transition. Phys. Rev. Lett. 84, 3117–3120 (2000).

    CAS  Article  Google Scholar 

  22. 22

    Keys, A. S., Iacovella, C. R. & Glotzer, S. C. Characterizing structure through shape matching and applications to self-assembly. Annu. Rev. Condens. Matter Phys. 2, 263–285 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Streitz, F. H., Glosli, J. N. & Patel, M. V. Beyond finite-size scaling in solidification simulations. Phys. Rev. Lett. 96, 225701 (2006).

    Article  Google Scholar 

  24. 24

    Holz, M., Heil, S. R. & Sacco, A. Temperature-dependent self-diffusion coefficients of water and six selected molecular liquids for calibration in accurate 1H NMR PFG measurements. Phys. Chem. Chem. Phys. 2, 4740–4742 (2000).

    CAS  Article  Google Scholar 

  25. 25

    Akins, J. A. & Ahrens, T. J. Dynamic compression of SiO2: A new interpretation. Geophys. Res. Lett. 29, 1394 (2002).

    Article  Google Scholar 

  26. 26

    Hicks, D. G. et al. Dissociation of liquid silica at high pressures and temperatures. Phys. Rev. Lett. 97, 025502 (2006).

    CAS  Article  Google Scholar 

  27. 27

    Christian, J. W. The Theory of Transformations in Metals and Alloys (Part I + II) (Newnes, 2002).

    Google Scholar 

  28. 28

    Tse, J. S. & Klug, D. D. Structural memory in pressure-amorphized AlPO4 . Science 255, 1559–1561 (1992).

    CAS  Article  Google Scholar 

  29. 29

    Williams, Q. & Jeanloz, R. Spectroscopic evidence for pressure-induced coordination changes in silicate glasses and melts. Science 239, 902–905 (1988).

    CAS  Article  Google Scholar 

  30. 30

    Callister, W. D. & Rethwisch, D. G. Fundamentals of Materials Science and Engineering: An Integrated Approach (John Wiley, 2012).

    Google Scholar 

  31. 31

    Lifshitz, I. M. & Slyozov, V. V. The kinetics of precipitation from supersaturated solid solutions. J. Phys. Chem. Solids 19, 35–50 (1961).

    Article  Google Scholar 

  32. 32

    Karki, B. B., Bhattarai, D. & Stixrude, L. First-principles simulations of liquid silica: Structural and dynamical behavior at high pressure. Phys. Rev. B 76, 104205 (2007).

    Article  Google Scholar 

  33. 33

    Orava, J., Greer, A. L., Gholipour, B., Hewak, D. W. & Smith, C. E. Characterization of supercooled liquid Ge2Sb2Te5 and its crystallization by ultrafast-heating calorimetry. Nature Mater. 11, 279–283 (2012).

    CAS  Article  Google Scholar 

  34. 34

    Prakapenka, V. P., Shen, G., Dubrovinsky, L. S., Rivers, M. L. & Sutton, S. R. High pressure induced phase transformation of SiO2 and GeO2: Difference and similarity. J. Phys. Chem. Solids 65, 1537–1545 (2004).

    CAS  Article  Google Scholar 

  35. 35

    Greer, A. L. New horizons for glass formation and stability. Nature Mater. 14, 542–546 (2015).

    CAS  Article  Google Scholar 

  36. 36

    Brebec, G., Seguin, R., Sella, C., Bevenot, J. & Martin, J. C. Diffusion du silicium dans la silice amorphe. Acta Metall. 28, 327–333 (1980).

    CAS  Article  Google Scholar 

  37. 37

    Reed, E. J., Fried, L. E. & Joannopoulos, J. D. A method for tractable dynamical studies of single and double shock compression. Phys. Rev. Lett. 90, 235503 (2003).

    Article  Google Scholar 

  38. 38

    Reed, E. J. Electron-ion coupling in shocked energetic materials. J. Phys. Chem. C 116, 2205–2211 (2012).

    CAS  Article  Google Scholar 

  39. 39

    Reed, E. J., Maiti, A. & Fried, L. E. Anomalous sound propagation and slow kinetics in dynamically compressed amorphous carbon. Phys. Rev. E 81, 016607 (2010).

    Article  Google Scholar 

  40. 40

    Van Beest, B. W. H., Kramer, G. J. & Van Santen, R. A. Force fields for silicas and aluminophosphates based on ab initio calculations. Phys. Rev. Lett. 64, 1955–1958 (1990).

    CAS  Article  Google Scholar 

  41. 41

    Saika-Voivod, I., Poole, P. H. & Sciortino, F. Fragile-to-strong transition and polyamorphism in the energy landscape of liquid silica. Nature 412, 514–517 (2001).

    CAS  Article  Google Scholar 

  42. 42

    Saika-Voivod, I., Sciortino, F., Grande, T. & Poole, P. H. Phase diagram of silica from computer simulation. Phys. Rev. E 70, 061507 (2004).

    Article  Google Scholar 

  43. 43

    Vollmayr, K., Kob, W. & Binder, K. Cooling-rate effects in amorphous silica: A computer-simulation study. Phys. Rev. B 54, 15808–15827 (1996).

    CAS  Article  Google Scholar 

  44. 44

    John, S. T., Klug, D. D. & LePage, Y. High-pressure densification of amorphous silica. Phys. Rev. B 46, 5933–5938 (1992).

    Article  Google Scholar 

  45. 45

    John, S. T. & Klug, D. D. Mechanical instability of α-quartz: A molecular dynamics study. Phys. Rev. Lett. 67, 3559–3562 (1991).

    Article  Google Scholar 

  46. 46

    Müser, M. H. & Binder, K. Molecular dynamics study of the α–β transition in quartz: Elastic properties, finite size effects, and hysteresis in the local structure. Phys. Chem. Miner. 28, 746–755 (2001).

    Article  Google Scholar 

  47. 47

    Mozzi, R. L. & Warren, B. E. The structure of vitreous silica. J. Appl. Crystallogr. 2, 164–172 (1969).

    CAS  Article  Google Scholar 

  48. 48

    Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    CAS  Article  Google Scholar 

  49. 49

    Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles (CRC Press, 1988).

    Google Scholar 

Download references


We thank A. Salleo for helpful comments and discussion. S.B.J. is supported by a National Science Foundation Graduate Research Fellowship under Grant No. DGE-114747. Y.S. is supported by a William R. Hewlett Stanford Graduate Fellowship.

Author information




Y.S. implemented the simulation, analysed data and prepared the manuscript. S.B.J. studied modelling of fused silica with contributions from E.J.R. supervising its analysis. T.Q. implemented the simulation and studied the shock Hugoniot. E.J.R. supervised this work and edited the manuscript. All authors discussed the results and implications and commented on the manuscript.

Corresponding author

Correspondence to Evan J. Reed.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1569 kb)

Supplementary Information

Supplementary Movie 1 (MPG 71375 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, Y., Jester, S., Qi, T. et al. Nanosecond homogeneous nucleation and crystal growth in shock-compressed SiO2. Nature Mater 15, 60–65 (2016).

Download citation

Further reading