Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Topological defects in liquid crystals as templates for molecular self-assembly

Abstract

Topological defects in liquid crystals (LCs) have been widely used to organize colloidal dispersions and template polymerization, leading to a range of assemblies, elastomers and gels. However, little is understood about molecular-level assembly processes within defects. Here, we report that nanoscopic environments defined by LC topological defects can selectively trigger processes of molecular self-assembly. By using fluorescence microscopy, cryogenic transmission electron microscopy and super-resolution optical microscopy, we observed signatures of molecular self-assembly of amphiphilic molecules in topological defects, including cooperativity, reversibility and controlled growth. We also show that nanoscopic o-rings synthesized from Saturn-ring disclinations and other molecular assemblies templated by defects can be preserved by using photocrosslinkable amphiphiles. Our results reveal that, in analogy to other classes of macromolecular templates such as polymer–surfactant complexes, topological defects in LCs are a versatile class of three-dimensional, dynamic and reconfigurable templates that can direct processes of molecular self-assembly.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Disclination lines and amphiphiles.
Figure 2: Self-assembly of amphiphiles in LC defects.
Figure 3: Controlled growth of assemblies in defects.
Figure 4: Dependence of standard free energy of self-assembly on amphiphile tail-length and head-group type.
Figure 5: Reversible formation and in situ crosslinking of molecular assemblies of amphiphiles templated by a −1/2 ‘Saturn-ring’ disclination line formed about microparticles.
Figure 6: Self-assembly of amphiphiles in LC defects.

Similar content being viewed by others

References

  1. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    Article  CAS  Google Scholar 

  2. Lu, K., Lu, L. & Suresh, S. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324, 349–352 (2009).

    CAS  Google Scholar 

  3. Weber, C. A., Bock, C. & Frey, E. Defect-mediated phase transitions in active soft matter. Phys. Rev. Lett. 112, 168301 (2014).

    Google Scholar 

  4. Sachet, E. et al. Dysprosium-doped cadmium oxide as a gateway material for mid-infrared plasmonics. Nature Mater. 14, 414–420 (2015).

    CAS  Google Scholar 

  5. van der Zande, A. M. et al. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nature Mater. 12, 554–561 (2013).

    CAS  Google Scholar 

  6. Liu, Q. et al. Self-alignment of plasmonic gold nanorods in reconfigurable anisotropic fluids for tunable bulk metamaterial applications. Nano Lett. 10, 1347–1353 (2010).

    CAS  Google Scholar 

  7. Dickson, W., Wurtz, G. A., Evans, P. R., Pollard, R. J. & Zayats, A. V. Electronically controlled surface plasmon dispersion and optical transmission through metallic hole arrays using liquid crystal. Nano Lett. 8, 281–286 (2008).

    CAS  Google Scholar 

  8. Wood, T. A., Lintuvuori, J. S., Schofield, A. B., Marenduzzo, D. & Poon, W. C. K. A self-quenched defect glass in a colloid-nematic liquid crystal composite. Science 334, 79–83 (2011).

    CAS  Google Scholar 

  9. Bukusoglu, E., Pal, S. K., de Pablo, J. J. & Abbott, N. L. Colloid-in-liquid crystal gels formed via spinodal decomposition. Soft Matter 10, 1602–1610 (2014).

    CAS  Google Scholar 

  10. Kikuchi, H., Yokota, M., Hisakado, Y., Yang, H. & Kajiyama, T. Polymer-stabilized liquid crystal blue phases. Nature Mater. 1, 64–68 (2002).

    CAS  Google Scholar 

  11. Xiang, J. & Lavrentovich, O. D. Blue-phase-polymer-templated nematic with sub-millisecond broad-temperature range electro-optic switching. Appl. Phys. Lett. 103, 051112 (2013).

    Google Scholar 

  12. Castles, F. et al. Stretchable liquid-crystal blue phase gels. Nature Mater. 13, 817–821 (2014).

    CAS  Google Scholar 

  13. Huck, W. T. S. Nanoscale Assembly: Chemical Techniques (Springer, 2005).

    Google Scholar 

  14. Zhao, X. et al. Molecular self-assembly and applications of designer peptide amphiphiles. Chem. Soc. Rev. 39, 3480–3498 (2010).

    CAS  Google Scholar 

  15. Chakrabarty, R., Mukherjee, P. S. & Stang, P. J. Supramolecular coordination: Self-assembly of finite two- and three-dimensional ensembles. Chem. Rev. 111, 6810–6918 (2011).

    CAS  Google Scholar 

  16. de Gennes, P. G. & Prost, J. The Physics of Liquid Crystals (Oxford Science Publications, 1993).

    Google Scholar 

  17. Gu, Y. & Abbott, N. L. Observation of Saturn-ring defects around solid microspheres in nematic liquid crystals. Phys. Rev. Lett. 85, 4719–4722 (2000).

    CAS  Google Scholar 

  18. Tkalec, U., Ravnik, M., Copar, S., Zumer, S. & Musevic, I. Reconfigurable knots and links in chiral nematic colloids. Science 333, 62–65 (2011).

    CAS  Google Scholar 

  19. Martinez, A. et al. Mutually tangled colloidal knots and induced defect loops in nematic fields. Nature Mater. 13, 258–263 (2014).

    CAS  Google Scholar 

  20. Mottram, N. J. & Sluckin, T. J. Defect-induced melting in nematic liquid crystals. Liq. Cryst. 27, 1301–1304 (2000).

    CAS  Google Scholar 

  21. Ravnik, M. & Zumer, S. Landau–de Gennes modelling of nematic liquid crystal colloids. Liq. Cryst. 36, 1201–1214 (2009).

    CAS  Google Scholar 

  22. Iliopoulos, I., Wang, T. K. & Audebert, R. Viscometric evidence of interactions between hydrophobically modified poly(sodium acrylate) and sodium dodecyl-sulfate. Langmuir 7, 617–619 (1991).

    CAS  Google Scholar 

  23. Hansson, P. & Lindman, B. Surfactant–polymer interactions. Curr. Opin. Colloid Interface Sci. 1, 604–613 (1996).

    CAS  Google Scholar 

  24. Yekta, A., Duhamel, J., Brochard, P., Adiwidjaja, H. & Winnik, M. A. A fluorescent-probe study of micelle-like cluster formation in aqueous-solutions of hydrophobically modified poly(ethylene oxide). Macromolecules 26, 1829–1836 (1993).

    CAS  Google Scholar 

  25. Biggs, S., Selb, J. & Candau, F. Effect of surfactant on the solution properties of hydrophobically modified polyacrylamide. Langmuir 8, 838–847 (1992).

    CAS  Google Scholar 

  26. Tanaka, R., Meadows, J., Williams, P. A. & Phillips, G. O. Interaction of hydrophobically modified (hydroxyethyl) cellulose with various added surfactants. Macromolecules 25, 1304–1310 (1992).

    CAS  Google Scholar 

  27. Guillemet, F. & Piculell, L. Interactions in aqueous mixtures of hydrophobically-modified polyelectrolyte and oppositely charged surfactant-mixed micelle formation and associative phase separation. J. Phys. Chem. 99, 9201–9209 (1995).

    CAS  Google Scholar 

  28. Piculell, L., Guillemet, F., Thuresson, K., Shubin, V. & Ericsson, O. Binding of surfactants to hydrophobically modified polymers. Adv. Colloid Interface Sci. 63, 1–21 (1996).

    CAS  Google Scholar 

  29. Mikhalyov, I., Gretskaya, N., Bergstrom, F. & Johansson, L. B. Electronic ground and excited state properties of dipyrrometheneboron difluoride (BODIPY): Dimers with application to biosciences. Phys. Chem. Chem. Phys. 4, 5663–5670 (2002).

    CAS  Google Scholar 

  30. Yoon, D. K. et al. Internal structure visualization and lithographic use of periodic toroidal holes in liquid crystals. Nature Mater. 6, 866–870 (2007).

    CAS  Google Scholar 

  31. Pires, D., Fleury, J. & Galerne, Y. Colloid particles in the interaction field of a disclination line in a nematic phase. Phys. Rev. Lett. 98, 247801 (2007).

    Google Scholar 

  32. Skarabot, M. et al. Hierarchical self-assembly of nematic colloidal superstructures. Phys. Rev. E 77, 061706 (2008).

    CAS  Google Scholar 

  33. Fleury, J., Pires, D. & Galerne, Y. Self-connected 3D architecture of microwires. Phys. Rev. Lett. 103, 267801 (2009).

    Google Scholar 

  34. Milette, J. et al. Reversible long-range patterning of gold nanoparticles by smectic liquid crystals. Soft Matter 8, 6593–6598 (2012).

    CAS  Google Scholar 

  35. Coursault, D. et al. Linear self-assembly of nanoparticles within liquid crystal defect arrays. Adv. Mater. 24, 1461–1465 (2012).

    CAS  Google Scholar 

  36. Voloschenko, D., Pishnyak, O. P., Shiyanovskii, S. V. & Lavrentovich, O. D. Effect of director distortions on morphologies of phase separation in liquid crystals. Phys. Rev. E 65, 060701 (2002).

    CAS  Google Scholar 

  37. Higashiguchi, K., Yasui, K., Ozawa, M., Odoi, K. & Kikuchi, H. Spatial distribution control of polymer nanoparticles by liquid crystal disclinations. Polym. J. 44, 632–638 (2012).

    CAS  Google Scholar 

  38. Karjiban, R. A., Shaari, N. S., Gunasakaran, U. V. & Basri, M. A coarse-grained molecular dynamics study of DLPC, DMPC, DPPC, and DSPC mixtures in aqueous solution. J. Chem. 2013, 931051 (2013).

    Google Scholar 

  39. Hiemenz, P. S. & Rajagopalan, R. Principles of Colloidal and Surface Chemistry (CRC, 1997).

    Google Scholar 

  40. Holmberg, K., Jonsson, B., Kronberg, B. & Lindman, B. Surfactants and Polymers in Aqueous Solution (Wiley, 2003).

    Google Scholar 

  41. Abe, A., Furuya, H., Shimizu, R. N. & Nam, S. Y. Calculation of the conformation entropies of dimer liquid crystals and comparison with the observed transition entropies at constant volume. Macromolecules 28, 96–103 (1995).

    CAS  Google Scholar 

  42. Israelachvili, J. N. Intermolecular and Surface Forces (Elsevier, 2011).

    Google Scholar 

  43. Nagarajan, R. & Ruckenstein, E. Theory of surfactant self-assembly: A predictive molecular thermodynamic approach. Langmuir 7, 2934–2969 (1991).

    CAS  Google Scholar 

  44. Ruckenstein, E., Huber, G. & Hoffmann, H. Surfactant aggregation in the presence of polymers. Langmuir 3, 382–387 (1987).

    CAS  Google Scholar 

  45. Nagarajan, R. Thermodynamics of nonionic polymer-micelle association. Colloids Surf. 13, 1–17 (1985).

    CAS  Google Scholar 

  46. Punnamaraju, S., You, H. & Steckl, A. J. Triggered release of molecules across droplet interface bilayer lipid membranes using photopolymerizable lipids. Langmuir 28, 7657–7664 (2012).

    CAS  Google Scholar 

  47. Iwata, T. et al. Control of cross-linking polymerization kinetics and polymer aggregated structure in polymer-stabilized liquid crystalline blue phases. Macromolecules 42, 2002–2008 (2009).

    CAS  Google Scholar 

  48. Lin, I. et al. Endotoxin-induced structural transformations in liquid crystalline droplets. Science 332, 1297–1300 (2011).

    CAS  Google Scholar 

  49. Miller, D. S. & Abbott, N. L. Influence of droplet size, pH and ionic strength on endotoxin-triggered ordering transitions in liquid crystalline droplets. Soft Matter 9, 374–382 (2013).

    CAS  Google Scholar 

  50. Dempsey, G. T., Vaughan, J. C., Chen, K. H., Bates, M. & Zhuang, X. Evaluation of fluorophores for optical performance in localization-based super-resolution imaging. Nature Methods 8, 1027–1040 (2011).

    CAS  Google Scholar 

  51. Gupta, R., Muralidhara, H. S. & Davis, H. T. Structure and phase behavior of phospholipid-based micelles in nonaqueous media. Langmuir 17, 5176–5183 (2001).

    CAS  Google Scholar 

  52. Danino, D., Gupta, R., Satyavolu, J. & Talmon, Y. Direct cryogenic-temperature transmission electron microscopy imaging of phospholipid aggregates in soybean oil. J. Colloid Interface Sci. 249, 180–186 (2002).

    CAS  Google Scholar 

  53. Salentinig, S., Sagalowicz, L., Leser, M. E., Tedeschi, C. & Glatter, O. Transitions in the internal structure of lipid droplets during fat digestion. Soft Matter 7, 650–661 (2011).

    CAS  Google Scholar 

  54. Kofiman, N., Schnabel-Lubovsky, M. & Talmon, Y. Nanostructure formation in the lecithin/isooctane/water system. J. Phys. Chem. B 117, 9558–9567 (2013).

    Google Scholar 

  55. Lee, H.-Y., Hashizaki, K., Diehn, K. & Raghavan, S. R. Reverse self-assembly of lipid onions induced by gadolinium and calcium ions. Soft Matter 9, 200–207 (2013).

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation (under awards DMR-1121288 (MRSEC) and CBET-1263970), the Army Research Office (W911-NF-11-1-0251 and W911-NF-14-1-0140), and the National Institutes of Health (CA108467 and AI092004). STORM imaging and analysis was performed at the Biochemistry Optical Core, University of Wisconsin-Madison.

Author information

Authors and Affiliations

Authors

Contributions

X.W., J.J.d.P. and N.L.A. designed the experiments. X.W., D.S.M. and E.B. performed the experimental work. X.W. and N.L.A. analysed the data. X.W., D.S.M., J.J.d.P. and N.L.A. wrote the paper. N.L.A. supervised the research. All authors discussed the progress of research and reviewed the manuscript.

Corresponding author

Correspondence to Nicholas L. Abbott.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1565 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Miller, D., Bukusoglu, E. et al. Topological defects in liquid crystals as templates for molecular self-assembly. Nature Mater 15, 106–112 (2016). https://doi.org/10.1038/nmat4421

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4421

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing