Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

High-temperature superconductivity in potassium-coated multilayer FeSe thin films

Abstract

The recent discovery of possible high-temperature (Tc) superconductivity over 65 K in a monolayer FeSe film on SrTiO3 (refs 1, 2, 3, 4, 5, 6) triggered a fierce debate on how superconductivity evolves from bulk to film, because bulk FeSe crystal exhibits a Tc of no higher than 10 K (ref. 7). However, the difficulty in controlling the carrier density and the number of FeSe layers has hindered elucidation of this problem4,8. Here, we demonstrate that deposition of potassium onto FeSe films markedly expands the accessible doping range towards the heavily electron-doped region. Intriguingly, we have succeeded in converting non-superconducting films with various thicknesses into superconductors with Tc as high as 48 K. We also found a marked increase in the magnitude of the superconducting gap on decreasing the FeSe film thickness, indicating that the interface plays a crucial role in realizing the high-temperature superconductivity. The results presented provide a new strategy to enhance and optimize Tc in ultrathin films of iron-based superconductors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of electronic structure on K deposition on a 3 ML FeSe film.
Figure 2: High-temperature superconductivity in a 3 ML FeSe film.
Figure 3: Electronic phase diagrams for different film thickness.

Similar content being viewed by others

References

  1. Wang, Q. Y. et al. Interface-induced high-temperature superconductivity in single unit-cell FeSe films on SrTiO3 . Chin. Phys. Lett. 29, 037402 (2012).

    Article  Google Scholar 

  2. Liu, D. F. et al. Electronic origin of high-temperature superconductivity in single-layer FeSe superconductor. Nature Commun. 3, 931 (2012).

    Article  Google Scholar 

  3. He, S. L. et al. Phase diagram and electronic indication of high-temperature superconductivity at 65 K in single-layer FeSe films. Nature Mater. 12, 605–610 (2013).

    Article  CAS  Google Scholar 

  4. Tan, S. Y. et al. Interface-induced superconductivity and strain-dependent spin density wave in FeSe/SrTiO3 thin films. Nature Mater. 12, 634–640 (2013).

    Article  CAS  Google Scholar 

  5. Ge, G-F. et al. Superconductivity above 100 K in single-layer FeSe films on doped SrTiO3 . Nature Mater. 14, 285–289 (2015).

    Article  CAS  Google Scholar 

  6. Sun, Y. et al. High temperature superconducting FeSe films on SrTiO3 substrates. Sci. Rep. 4, 6040 (2014).

    Article  CAS  Google Scholar 

  7. Hsu, F. C. et al. Superconductivity in the PbO-type structure α-FeSe. Proc. Natl Acad. Sci. USA 105, 14262–14264 (2008).

    Article  CAS  Google Scholar 

  8. Liu, X. et al. Dichotomy of the electronic structure and superconductivity between single-layer and double-layer FeSe/SrTiO3 films. Nature Commun. 5, 5047 (2014).

    Article  CAS  Google Scholar 

  9. Lee, P. A., Nagaosa, N. & Wen, X-G. Doping a Mott insulator: Physics of high-temperature superconductivity. Rev. Mod. Phys. 78, 17–85 (2006).

    Article  CAS  Google Scholar 

  10. Stewart, G. R. Superconductivity in iron compounds. Rev. Mod. Phys. 83, 1589–1652 (2011).

    Article  CAS  Google Scholar 

  11. Peng, R. et al. Tuning the band structure and superconductivity in single-layer FeSe by interface engineering. Nature Commun. 5, 5044 (2014).

    Article  CAS  Google Scholar 

  12. Peng, R. et al. Measurement of an enhanced superconducting phase and a pronounced anisotropy of the energy gap of a strained FeSe single layer in FeSe/Nb:SrTiO3/KTaO3 heterostructures using photoemission spectroscopy. Phys. Rev. Lett. 112, 107001 (2014).

    Article  CAS  Google Scholar 

  13. Hao, N. & Hu, J. Topological phases in the single-layer FeSe. Phys. Rev. X 4, 031053 (2014).

    Google Scholar 

  14. Maletz, J. et al. Unusual band renormalization in the simplest iron-based superconductor FeSe1−x . Phys. Rev. B 89, 220506(R) (2014).

    Article  Google Scholar 

  15. Nakayama, K. et al. Reconstruction of band structure induced by electronic nematicity in an FeSe superconductor. Phys. Rev. Lett. 113, 237001 (2014).

    Article  CAS  Google Scholar 

  16. Matsui, H. et al. BCS-Like Bogoliubov quasiparticles in high-Tc superconductors observed by angle-resolved photoemission spectroscopy. Phys. Rev. Lett. 90, 217002 (2003).

    Article  CAS  Google Scholar 

  17. Norman, M. R., Randeria, M., Ding, H. & Campuzano, J. C. Phenomenology of the low-energy spectral function in high-Tc superconductors. Phys. Rev. B 57, R11093–R11096 (1998).

    Article  CAS  Google Scholar 

  18. Haviland, D. B., Liu, Y. & Goldman, A. M. Onset of superconductivity in the two-dimensional limit. Phys. Rev. Lett. 62, 2180–2183 (1989).

    Article  CAS  Google Scholar 

  19. Song, C. L. et al. Molecular-beam epitaxy and robust superconductivity of stoichiometric FeSe crystalline films on bilayer graphene. Phys. Rev. B 84, 020503(R) (2011).

    Article  Google Scholar 

  20. Xiang, Y. Y., Wang, F., Wang, D., Wang, Q. H. & Lee, D. H. High-temperature superconductivity at the FeSe/SrTiO3 interface. Phys. Rev. B 86, 134508 (2012).

    Article  Google Scholar 

  21. Lee, J. J. et al. Interfacial mode coupling as the origin of the enhancement of Tc in FeSe films on SrTiO3 . Nature 515, 245–248 (2014).

    Article  CAS  Google Scholar 

  22. Cao, H. Y., Tan, S. Y., Xiang, H. J., Feng, D. L. & Gong, X. G. Interfacial effects on the spin density wave in FeSe/SrTiO3 thin films. Phys. Rev. B 89, 014501 (2014).

    Article  Google Scholar 

  23. Bozovic, I. & Ahn, C. A new frontier for superconductivity. Nature Phys. 10, 892–895 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Q. Xue, X. Ma, L. Wang, F. Li and W. Zhang for their advice in thin-film growth. We also thank E. Ieki, G. N. Phan, S. Kanayama and E. Noguchi for their assistance in thin-film growth and ARPES measurements. This work was supported by grants from the Japan Society for the Promotion Science (JSPS) and the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan.

Author information

Authors and Affiliations

Authors

Contributions

Y.M., K.N. and T.T. designed the research. Y.M., K.N., K.S. and T.S. carried out the experiment. Y.M., K.N., T.S. and T.T. wrote the manuscript.

Corresponding author

Correspondence to K. Nakayama.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 741 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miyata, Y., Nakayama, K., Sugawara, K. et al. High-temperature superconductivity in potassium-coated multilayer FeSe thin films. Nature Mater 14, 775–779 (2015). https://doi.org/10.1038/nmat4302

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4302

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing