Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals

Abstract

Triplet excitons are ubiquitous in organic optoelectronics, but they are often an undesirable energy sink because they are spin-forbidden from emitting light and their high binding energy hinders the generation of free electron–hole pairs. Harvesting their energy is consequently an important technological challenge. Here, we demonstrate direct excitonic energy transfer from ‘dark’ triplets in the organic semiconductor tetracene to colloidal PbS nanocrystals, thereby successfully harnessing molecular triplet excitons in the near infrared. Steady-state excitation spectra, supported by transient photoluminescence studies, demonstrate that the transfer efficiency is at least (90 ± 13)%. The mechanism is a Dexter hopping process consisting of the simultaneous exchange of two electrons. Triplet exciton transfer to nanocrystals is expected to be broadly applicable in solar and near-infrared light-emitting applications, where effective molecular phosphors are lacking at present. In particular, this route to ‘brighten’ low-energy molecular triplet excitons may permit singlet exciton fission sensitization of conventional silicon solar cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of triplet exciton transfer from tetracene to a PbS nanocrystal with decanoic acid ligands.
Figure 2: Steady-state observations of triplet transfer.
Figure 3: Energy transfer efficiency versus the number of carbon–carbon single bonds in the nanocrystal ligand.
Figure 4: Monitoring triplet transfer via singlet fission.
Figure 5: Monitoring triplet transfer in the time domain.

Similar content being viewed by others

References

  1. Bardeen, C. J. The structure and dynamics of molecular excitons. Annu. Rev. Phys. Chem. 65, 127–148 (2014).

    Article  CAS  Google Scholar 

  2. Köhler, A. & Bässler, H. What controls triplet exciton transfer in organic semiconductors? J. Mater. Chem. 21, 4003–4011 (2011).

    Article  Google Scholar 

  3. Rao, A. et al. The role of spin in the kinetic control of recombination in organic photovoltaics. Nature 500, 435–439 (2013).

    Article  CAS  Google Scholar 

  4. Baldo, M., O’Brien, D., Thompson, M. & Forrest, S. Excitonic singlet–triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60, 422–428 (1999).

    Article  Google Scholar 

  5. Segal, M., Baldo, M., Holmes, R., Forrest, S. & Soos, Z. Excitonic singlet–triplet ratios in molecular and polymeric organic materials. Phys. Rev. B 68, 075211 (2003).

    Article  Google Scholar 

  6. Lee, J. et al. Singlet exciton fission photovoltaics. Acc. Chem. Res. 46, 1300–1311 (2013).

    Article  CAS  Google Scholar 

  7. Wilson, M. W. B., Rao, A., Ehrler, B. & Friend, R. H. Singlet exciton fission in polycrystalline pentacene: From photophysics toward devices. Acc. Chem. Res. 46, 1330–1338 (2013).

    Article  CAS  Google Scholar 

  8. Smith, M. B. & Michl, J. Recent advances in singlet fission. Annu. Rev. Phys. Chem. 64, 361–386 (2013).

    Article  CAS  Google Scholar 

  9. Thompson, N. J., Congreve, D. N., Goldberg, D., Menon, V. M. & Baldo, M. A. Slow light enhanced singlet exciton fission solar cells with a 126% yield of electrons per photon. Appl. Phys. Lett. 103, 263302 (2013).

    Article  Google Scholar 

  10. Dexter, D. L. A theory of sensitized luminescence in solids. J. Chem. Phys. 21, 836–850 (1953).

    Article  CAS  Google Scholar 

  11. Baldo, M. A. et al. Highly efficient phosphorescent emission from organic electroluminescent devices. Nature 395, 151–154 (1998).

    Article  CAS  Google Scholar 

  12. Semonin, O. E. et al. Absolute photoluminescence quantum yields of IR-26 Dye, PbS, and PbSe quantum dots. J. Phys. Chem. Lett. 1, 2445–2450 (2010).

    Article  CAS  Google Scholar 

  13. Whitmore, P. M., Alivisatos, A. P. & Harris, C. B. Distance dependence of electronic energy transfer to semiconductor surfaces: n3π* Pyrazine/GaAs(110). Phys. Rev. Lett. 50, 1092–1094 (1983).

    Article  CAS  Google Scholar 

  14. Hayashi, T., Castner, T. G. & Boyd, R. W. Quenching of molecular fluorescence near the surface of a semiconductor. Chem. Phys. Lett. 94, 461–466 (1983).

    Article  CAS  Google Scholar 

  15. Piland, G. B. et al. Dynamics of molecular excitons near a semiconductor surface studied by fluorescence quenching of polycrystalline tetracene on silicon. Chem. Phys. Lett. 601, 33–38 (2014).

    Article  CAS  Google Scholar 

  16. Anni, M. et al. Förster energy transfer from blue-emitting polymers to colloidal CdSe/ZnS core shell quantum dots. Appl. Phys. Lett. 85, 4169–4171 (2004).

    Article  CAS  Google Scholar 

  17. Anikeeva, P. O. et al. Photoluminescence of CdSe/ZnS core/shell quantum dots enhanced by energy transfer from a phosphorescent donor. Chem. Phys. Lett. 424, 120–125 (2006).

    Article  CAS  Google Scholar 

  18. Reineke, S. & Baldo, M. Room temperature triplet state spectroscopy of organic semiconductors. Sci. Rep. 4, 3797 (2014).

    Article  Google Scholar 

  19. Burdett, J. J. & Bardeen, C. J. The dynamics of singlet fission in crystalline tetracene and covalent analogs. Acc. Chem. Res. 46, 1312–1320 (2013).

    Article  CAS  Google Scholar 

  20. Wilson, M. W. B. et al. Temperature-independent singlet exciton fission in tetracene. J. Am. Chem. Soc. 135, 16680–15588 (2013).

    Article  CAS  Google Scholar 

  21. Tayebjee, M. J. Y., Clady, R. G. C. R. & Schmidt, T. W. The exciton dynamics in tetracene thin films. Phys. Chem. Chem. Phys. 15, 14797–14805 (2013).

    Article  CAS  Google Scholar 

  22. Yost, S. R. et al. A transferable model for singlet-fission kinetics. Nature Chem. 6, 492–497 (2014).

    Article  CAS  Google Scholar 

  23. Wu, T. C. et al. Singlet fission efficiency in tetracene-based organic solar cells. Appl. Phys. Lett. 104, 193901 (2014).

    Article  Google Scholar 

  24. Burdett, J. J., Gosztola, D. & Bardeen, C. J. The dependence of singlet exciton relaxation on excitation density and temperature in polycrystalline tetracene thin films: Kinetic evidence for a dark intermediate state and implications for singlet fission. J. Chem. Phys. 135, 214508 (2011).

    Article  Google Scholar 

  25. Ehrler, B. et al. In situ measurement of exciton energy in hybrid singlet-fission solar cells. Nature Commun. 3, 1019 (2012).

    Article  Google Scholar 

  26. Jadhav, P. J. et al. Triplet exciton dissociation in singlet exciton fission photovoltaics. Adv. Mater. 24, 6169–6174 (2012).

    Article  CAS  Google Scholar 

  27. Tomkiewicz, Y., Groff, R. P. & Avakian, P. Spectroscopic approach to energetics of exciton fission and fusion in tetracene crystals. J. Chem. Phys. 54, 4504–4507 (1971).

    Article  CAS  Google Scholar 

  28. Zarghami, M. et al. p-Type PbSe and PbS quantum dot solids prepared with short-chain acids and diacids. ACS Nano 4, 2475–2485 (2010).

    Article  CAS  Google Scholar 

  29. Zhu, H., Song, N. & Lian, T. Controlling charge separation and recombination rates in CdSe/ZnS type I core-shell quantum dots by shell thicknesses. J. Am. Chem. Soc. 132, 15038–15045 (2010).

    Article  CAS  Google Scholar 

  30. Merrifield, R. E., Avakian, P., Groff, R. P., Physics, C. & June, L. Fission of singlet excitons into pairs of triplet excitons in tetracene crystals. Chem. Phys. Lett. 3, 386–388 (1969).

    Article  CAS  Google Scholar 

  31. Congreve, D. N. et al. External quantum efficiency above 100% in a singlet-exciton-fission-based organic photovoltaic cell. Science 340, 334–337 (2013).

    Article  CAS  Google Scholar 

  32. Maksym, P. A. & Chakraborty, T. Quantum dots in a magnetic field: Role of electron–electron interactions. Phys. Rev. Lett. 65, 108–111 (1990).

    Article  CAS  Google Scholar 

  33. Moreels, I. et al. Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano 3, 3023–3030 (2009).

    Article  CAS  Google Scholar 

  34. Jasieniak, J., Califano, M. & Watkins, S. E. Size-dependent valence and conduction band-edge energies of semiconductor nanocrystals. ACS Nano 5, 5888–5902 (2011).

    Article  CAS  Google Scholar 

  35. Graham, K. R. et al. Re-evaluating the role of sterics and electronic coupling in determining the open-circuit voltage of organic solar cells. Adv. Mater. 25, 6076–6082 (2013).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported as part of the Center for Excitonics, an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under Award Number DE-SC0001088 (MIT). D.N.C. was partially supported by the National Science Foundation Graduate Research Fellowship under Grant No. 1122374. J.M.S. was partially supported under FA9550-11-C-0028 awarded by the Department of Defense, Air Force Office of Scientific Research, National Defense Science and Engineering Graduate (NDSEG) Fellowship, 32 CFR 168a, and by the US Army through the Institute for Soldier Nanotechnology (W911NF-13-D-0001). The authors thank O. Chen, C-H. Chuang, D. D. Grinolds, D. K. Harris and G. W. Hwang for stimulating discussions and their considerable help with nanocrystal synthesis, as well as R. Murphy for help in obtaining access to equipment.

Author information

Authors and Affiliations

Authors

Contributions

N.J.T., D.N.C. and M.Wu fabricated the samples and made steady-state measurements. P.R.B. performed UPS and AFM measurements. M.W.B.W. and T.S.B. made transient measurements and M.W.B.W. prepared nanocrystal solutions for sample fabrication. J.M.S., M.W.B.W. and P.R.B. fabricated the nanocrystals. N.G. and M.Welborn simulated the nanocrystal structure. The project was conceived by N.J.T. and M.A.B. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Moungi G. Bawendi or Marc A. Baldo.

Ethics declarations

Competing interests

MIT has filed a provisional application for patent based on this technology that names D.N.C., N.J.T., M.W.B.W., M.Wu, M.A.B., V.B. and M.G.B. as inventors.

Supplementary information

Supplementary Information

Supplementary Information (PDF 629 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Thompson, N., Wilson, M., Congreve, D. et al. Energy harvesting of non-emissive triplet excitons in tetracene by emissive PbS nanocrystals. Nature Mater 13, 1039–1043 (2014). https://doi.org/10.1038/nmat4097

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat4097

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing