Bioinspired structural materials

Abstract

Natural structural materials are built at ambient temperature from a fairly limited selection of components. They usually comprise hard and soft phases arranged in complex hierarchical architectures, with characteristic dimensions spanning from the nanoscale to the macroscale. The resulting materials are lightweight and often display unique combinations of strength and toughness, but have proven difficult to mimic synthetically. Here, we review the common design motifs of a range of natural structural materials, and discuss the difficulties associated with the design and fabrication of synthetic structures that mimic the structural and mechanical characteristics of their natural counterparts.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Material-property chart, and projections for natural and synthetic materials.
Figure 2: Hierarchical structure of bone and bamboo.
Figure 3: Healthy human cortical bone resists fracture through complementary intrinsic and extrinsic contributions throughout its hierarchical structure.
Figure 4: The hierarchical structure and properties of nacre.
Figure 5: Processing of nacre-like structures by freeze casting.
Figure 6: Additive-manufacturing techniques.

References

  1. 1

    Ritchie, R. O. The conflicts between strength and toughness. Nature Mater. 10, 817–822 (2011).

    CAS  Article  Google Scholar 

  2. 2

    Mann, S. Biomineralization: Principles and Concepts in Bioinorganic Materials Chemistry (Oxford Univ. Press, 2001).

    Google Scholar 

  3. 3

    Vincent, J. F. V. Biomimetic materials. J. Mater. Res. 23, 3140–3147 (2008).

    Article  CAS  Google Scholar 

  4. 4

    Wegst, U. G. K. & Ashby, M. F. The mechanical efficiency of natural materials. Philos. Mag. 84, 2167–2181 (2004).

    Article  CAS  Google Scholar 

  5. 5

    Aizenberg, J. & Fratzl, P. Biological and biomimetic materials. Adv. Mater. 21, 387–388 (2009).

    Article  CAS  Google Scholar 

  6. 6

    Dunlop, J. W. C. & Fratzl, P. Biological composites. Annu. Rev. Mater. Res. 40, 1–24 (2010).

    Article  CAS  Google Scholar 

  7. 7

    Li, L. & Ortiz, C. Pervasive nanoscale deformation twinning as a catalyst for efficient energy dissipation in a bioceramic armour. Nature Mater. 13, 501–507 (2014).

    Article  CAS  Google Scholar 

  8. 8

    Aizenberg, J. & Fratzl, P. New materials through bioinspiration and nanoscience. Adv. Funct. Mater. 23, 4398–4399 (2013).

    Article  CAS  Google Scholar 

  9. 9

    Aizenberg, J., Fratzl, P. & Addadi, L. Preface for the special issue celebrating Stephen Weiner's 65th birthday. J. Struct. Biol. 183, 105–106 (2013).

    Article  Google Scholar 

  10. 10

    Hart, G. L. W. Where are nature's missing structures? Nature Mater. 6, 941–945 (2007).

    Article  CAS  Google Scholar 

  11. 11

    Ji, B. H. & Gao, H. J. Mechanical principles of biological nanocomposites. Annu. Rev. Mater. Res. 40, 77–100 (2010).

    Article  CAS  Google Scholar 

  12. 12

    Launey, M. E., Buehler, M. J. & Ritchie, R. O. On the mechanistic origins of toughness in bone. Annu. Rev. Mater. Res. 40, 25–53 (2010).

    Article  CAS  Google Scholar 

  13. 13

    Meyers, M. A., Chen, P. Y., Lin, A. Y. M. & Seki, Y. Biological materials: Structure and mechanical properties. Prog. Mater. Sci. 53, 1–206 (2008).

    Article  CAS  Google Scholar 

  14. 14

    Studart, A. R. Towards high-performance bioinspired composites. Adv. Mater. 24, 5024–5044 (2012).

    Article  CAS  Google Scholar 

  15. 15

    Wang, R. Z. & Gupta, H. S. Deformation and fracture mechanisms of bone and nacre. Annu. Rev. Mater. Res. 41, 41–73 (2011).

    Article  CAS  Google Scholar 

  16. 16

    Weaver, J. C. et al. The stomatopod dactyl club: A formidable damage-tolerant biological hammer. Science 336, 1275–1280 (2012).

    Article  CAS  Google Scholar 

  17. 17

    Wegst, U. G. K. Bamboo and wood in musical instruments. Annu. Rev. Mater. Res. 38, 323–349 (2008).

    Article  Google Scholar 

  18. 18

    Hing, K. A. Bone repair in the twenty-first century: Biology, chemistry or engineering? Phil. Trans. R. Soc. Lond. A 362, 2821–2850 (2004).

    Article  CAS  Google Scholar 

  19. 19

    Glimcher, M. J. Bone: Nature of the calcium phosphate crystals and cellular, structural, and physical chemical mechanisms in their formation. Rev. Mineral. Geochem. 64, 223–282 (2006).

    Article  CAS  Google Scholar 

  20. 20

    Jager, I. & Fratzl, P. Mineralized collagen fibrils: A mechanical model with a staggered arrangement of mineral particles. Biophys. J. 79, 1737–1746 (2000).

    Article  CAS  Google Scholar 

  21. 21

    Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Mater. 4, 612–616 (2005).

    Article  CAS  Google Scholar 

  22. 22

    Koester, K. J., Ager, J. W. & Ritchie, R. O. The true toughness of human cortical bone measured with realistically short cracks. Nature Mater. 7, 672–677 (2008).

    Article  CAS  Google Scholar 

  23. 23

    Nalla, R. K., Kruzic, J. J., Kinney, J. H. & Ritchie, R. O. Mechanistic aspects of fracture and R-curve behavior in human cortical bone. Biomaterials 26, 217–231 (2005).

    Article  CAS  Google Scholar 

  24. 24

    Barthelat, F., Tang, H., Zavattieri, P. D., Li, C. M. & Espinosa, H. D. On the mechanics of mother of pearl: A key feature in the material hierarchical structure. J. Mech. Phys. Solids 55, 306–337 (2007).

    Article  CAS  Google Scholar 

  25. 25

    Wang, R. Z., Suo, Z., Evans, A. G., Yao, N. & Aksay, I. A. Deformation mechanisms in nacre. J. Mater. Res. 16, 2485–2493 (2001).

    Article  CAS  Google Scholar 

  26. 26

    Evans, A. G. et al. Model for the robust mechanical behavior of nacre. J. Mater. Res. 16, 2475–2484 (2001).

    Article  CAS  Google Scholar 

  27. 27

    Li, X. D., Chang, W. C., Chao, Y. J., Wang, R. Z. & Chang, M. Nanoscale structural and mechanical characterization of a natural nanocomposite material: The shell of red abalone. Nano Lett. 4, 613–617 (2004).

    Article  CAS  Google Scholar 

  28. 28

    Smith, B. L. et al. Molecular mechanistic origin of the toughness of natural adhesives, fibres and composites. Nature 399, 761–763 (1999).

    Article  CAS  Google Scholar 

  29. 29

    Song, F., Soh, A. K. & Bai, Y. L. Structural and mechanical properties of the organic matrix layers of nacre. Biomaterials 24, 3623–3631 (2003).

    Article  CAS  Google Scholar 

  30. 30

    Espinosa, H. D. et al. Tablet-level origin of toughening in abalone shells and translation to synthetic composite materials. Nature Commun. 2, 173 (2011).

    Article  CAS  Google Scholar 

  31. 31

    Suzuki, M. et al. An acidic matrix protein, Pif, is a key macromolecule for nacre formation. Science 325, 1388–1390 (2009).

    Article  CAS  Google Scholar 

  32. 32

    Kroger, N. The molecular basis of nacre formation. Science 325, 1351–1352 (2009).

    Article  CAS  Google Scholar 

  33. 33

    Tanner, K. E. Small but extremely tough. Science 336, 1237–1238 (2012).

    Article  CAS  Google Scholar 

  34. 34

    Lawn, B. R., Lee, J. J. W. & Chai, H. Teeth: Among nature's most durable biocomposites. Annu. Rev. Mater. Res. 40, 55–75 (2010).

    Article  CAS  Google Scholar 

  35. 35

    Lin, C. P., Douglas, W. H. & Erlandsen, S. L. Scanning electron-microscopy of type-I collagen at the dentin enamel junction of human teeth. J. Histochem. Cytochem. 41, 381–388 (1993).

    Article  CAS  Google Scholar 

  36. 36

    Marshall, S. J. et al. The dentin-enamel junction — a natural, multilevel interface. J. Eur. Ceram. Soc. 23, 2897–2904 (2003).

    Article  CAS  Google Scholar 

  37. 37

    Kruzic, J., Nalla, R. K., Kinney, J. H. & Ritchie, R. O. Crack blunting, crack bridging and resistance-curve fracture mechanics in dentin: Effect of hydration. Biomaterials 24, 5209–5221 (2003).

    Article  CAS  Google Scholar 

  38. 38

    Imbeni, V., Kruzic, J. J., Marshall, G. W., Marshall, S. J. & Ritchie, R. O. The dentin-enamel junction and the fracture of human teeth. Nature Mater. 4, 229–232 (2005).

    Article  CAS  Google Scholar 

  39. 39

    Kinney, J. H., Nalla, R. K., Pople, J. A., Breunig, T. M. & Ritchie, R. O. Age-related transparent root dentin: Mineral concentration, crystallite size, and mechanical properties. Biomaterials 26, 3363–3376 (2005).

    Article  CAS  Google Scholar 

  40. 40

    Wegst, U. G. K. Bending efficiency through property gradients in bamboo, palm, and wood-based composites. J. Mech. Behav. Biomed. Mater. 4, 744–755 (2011).

    Article  Google Scholar 

  41. 41

    Wegst, U. G. K. & Ashby, M. F. The structural efficiency of orthotropic stalks, stems and tubes. J. Mater. Sci. 42, 9005–9014 (2007).

    Article  CAS  Google Scholar 

  42. 42

    Gehrke, N. et al. Retrosynthesis of nacre via amorphous precursor particles. Chem. Mater. 17, 6514–6516 (2005).

    Article  CAS  Google Scholar 

  43. 43

    Oaki, K. & Imai, H. The hierarchical architecture of nacre and its mimetic material. Angew. Chem. Int. Ed. 44, 6571–6575 (2005).

    Article  CAS  Google Scholar 

  44. 44

    Tseng, Y. H., Lin, H. Y., Liu, M. H., Chen, Y. F. & Mou, C. Y. Biomimetic synthesis of nacrelike faceted mesocrystals of ZnO-gelatin composite. J. Phys. Chem. C 113, 18053–18061 (2009).

    Article  CAS  Google Scholar 

  45. 45

    Aizenberg, J. Crystallization in patterns: A bio-inspired approach. Adv. Mater. 16, 1295–1302 (2004).

    Article  CAS  Google Scholar 

  46. 46

    Aizenberg, J., Muller, D. A., Grazul, J. L. & Hamann, D. R. Direct fabrication of large micropatterned single crystals. Science 299, 1205–1208 (2003).

    Article  CAS  Google Scholar 

  47. 47

    Ethirajan, A. et al. Biomimetic hydroxyapatite crystallization in gelatin nanoparticles synthesized using a miniemulsion process. Adv. Funct. Mater. 18, 2221–2227 (2008).

    Article  CAS  Google Scholar 

  48. 48

    Perkin, K. K., Turner, J. L., Wooley, K. L. & Mann, S. Fabrication of hybrid nanocapsules by calcium phosphate mineralization of shell cross-linked polymer micelles and nanocages. Nano Lett. 5, 1457–1461 (2005).

    Article  CAS  Google Scholar 

  49. 49

    Hartgerink, J. D., Beniash, E. & Stupp, S. I. Self-assembly and mineralization of peptide-amphiphile nanofibers. Science 294, 1684–1688 (2001).

    Article  CAS  Google Scholar 

  50. 50

    Pouget, E. et al. Hierarchical architectures by synergy between dynamical template self-assembly and biomineralization. Nature Mater. 6, 434–439 (2007).

    Article  CAS  Google Scholar 

  51. 51

    Schnepp, Z. A. C., Gonzalez-McQuire, R. & Mann, S. Hybrid biocomposites based on calcium phosphate mineralization of self-assembled supramolecular hydrogels. Adv. Mater. 18, 1869–1872 (2006).

    Article  CAS  Google Scholar 

  52. 52

    Watanabe, J. & Akashi, M. Novel biomineralization for hydrogels: Electrophoresis approach accelerates hydroxyapatite formation in hydrogels. Biomacromolecules 7, 3008–3011 (2006).

    Article  CAS  Google Scholar 

  53. 53

    Kong, X. D., Cui, F. Z., Wang, X. M., Zhang, M. & Zhang, W. Silk fibroin regulated mineralization of hydroxyapatite nanocrystals. J. Cryst. Growth 270, 197–202 (2004).

    Article  CAS  Google Scholar 

  54. 54

    Zhang, S. K. & Gonsalves, K. E. Influence of the chitosan surface profile on the nucleation and growth of calcium carbonate films. Langmuir 14, 6761–6766 (1998).

    Article  CAS  Google Scholar 

  55. 55

    Chung, W. J., Kwon, K. Y., Song, J. & Lee, S. W. Evolutionary screening of collagen-like peptides that nucleate hydroxyapatite crystals. Langmuir 27, 7620–7628 (2011).

    Article  CAS  Google Scholar 

  56. 56

    Kretlow, J. D. & Mikos, A. G. Review: Mineralization of synthetic polymer scaffolds for bone tissue engineering. Tissue Eng. 13, 927–938 (2007).

    Article  CAS  Google Scholar 

  57. 57

    Song, J., Malathong, V. & Bertozzi, C. R. Mineralization of synthetic polymer scaffolds: A bottom-up approach for the development of artificial bone. J. Am. Chem. Soc. 127, 3366–3372 (2005).

    Article  CAS  Google Scholar 

  58. 58

    Ajikumar, P. K., Lakshminarayanan, R. & Valiyaveettil, S. Controlled deposition of thin films of calcium carbonate on natural and synthetic templates. Cryst. Growth. Des. 4, 331–335 (2004).

    Article  CAS  Google Scholar 

  59. 59

    Kim, S., Ku, S. H., Lim, S. Y., Kim, J. H. & Park, C. B. Graphene-biomineral hybrid materials. Adv. Mater. 23, 2009–2014 (2011).

    Article  CAS  Google Scholar 

  60. 60

    Zhao, B., Hu, H., Mandal, S. K. & Haddon, R. C. A bone mimic based on the self-assembly of hydroxyapatite on chemically functionalized single-walled carbon nanotubes. Chem. Mater. 17, 3235–3241 (2005).

    Article  CAS  Google Scholar 

  61. 61

    Song, J., Saiz, E. & Bertozzi, C. R. A new approach to mineralization of biocompatible hydrogel scaffolds: An efficient process toward 3-dimensional bonelike composites. J. Am. Chem. Soc. 125, 1236–1243 (2003).

    Article  CAS  Google Scholar 

  62. 62

    Liu, G. et al. Three-dimensional biomimetic mineralization of dense hydrogel templates. J. Am. Chem. Soc. 131, 9937–9939 (2009).

    Article  CAS  Google Scholar 

  63. 63

    Chen, S. F. et al. Polymer-directed formation of unusual CaCO3 pancakes with controlled surface structures. Adv. Mater. 17, 1461–1465 (2005).

    Article  CAS  Google Scholar 

  64. 64

    Colfen, H. & Mann, S. Higher-order organization by mesoscale self-assembly and transformation of hybrid nanostructures. Angew. Chem. Int. Ed. 42, 2350–2365 (2003).

    Article  CAS  Google Scholar 

  65. 65

    Nykypanchuk, D., Maye, M. M., van der Lelie, D. & Gang, O. DNA-guided crystallization of colloidal nanoparticles. Nature 451, 549–552 (2008).

    Article  CAS  Google Scholar 

  66. 66

    Walther, A. & Muller, A. H. E. Janus particles: Synthesis, self-assembly, physical properties, and applications. Chem. Rev. 113, 5194–5261 (2013).

    Article  CAS  Google Scholar 

  67. 67

    Sohoni, G. B. & Mark, J. E. Anisotropic reinforcement in elastomers containing magnetic filler particles. J. Appl. Polymer Sci. 34, 2853–2859 (1987).

    Article  CAS  Google Scholar 

  68. 68

    Erb, R. M., Libanori, R., Rothfuchs, N. & Studart, A. R. Composites reinforced in three dimensions by using low magnetic fields. Science 335, 199–204 (2012).

    Article  CAS  Google Scholar 

  69. 69

    Garcia-Tunon, E. et al. Designing smart particles for the assembly of complex macroscopic structures. Angew. Chem. Int. Ed. 52, 7805–7808 (2013).

    Article  CAS  Google Scholar 

  70. 70

    Gonzenbach, U. T., Studart, A. R., Tervoort, E. & Gauckler, L. J. Ultrastable particle-stabilized foams. Angew. Chem. Int. Ed. 45, 3526–3530 (2006).

    Article  CAS  Google Scholar 

  71. 71

    Ortiz, C. & Boyce, M. C. Materials science — Bioinspired structural materials. Science 319, 1053–1054 (2008).

    Article  CAS  Google Scholar 

  72. 72

    Barthelat, F. & Espinosa, H. D. An experimental investigation of deformation and fracture of nacre-mother of pearl. Exp. Mech. 47, 311–324 (2007).

    Article  Google Scholar 

  73. 73

    Kato, T. Polymer/calcium carbonate layered thin-film composites. Adv. Mater. 12, 1543–1546 (2000).

    Article  CAS  Google Scholar 

  74. 74

    Tang, Z. Y., Kotov, N. A., Magonov, S. & Ozturk, B. Nanostructured artificial nacre. Nature Mater. 2, 413–418 (2003).

    Article  CAS  Google Scholar 

  75. 75

    Podsiadlo, P. et al. Ultrastrong and stiff layered polymer nanocomposites. Science 318, 80–83 (2007).

    Article  CAS  Google Scholar 

  76. 76

    Bonderer, L. J., Studart, A. R. & Gauckler, L. J. Bioinspired design and assembly of platelet reinforced polymer films. Science 319, 1069–1073 (2008).

    Article  CAS  Google Scholar 

  77. 77

    Li, Y. Q., Yu, T., Yang, T. Y., Zheng, L. X. & Liao, K. Bio-inspired nacre-like composite films based on graphene with superior mechanical, electrical, and biocompatible properties. Adv. Mater. 24, 3426–3431 (2012).

    Article  CAS  Google Scholar 

  78. 78

    Sellinger, A. et al. Continuous self-assembly of organic-inorganic nanocomposite coatings that mimic nacre. Nature 394, 256–260 (1998).

    Article  CAS  Google Scholar 

  79. 79

    Chen, L., Ballarini, R., Kahn, H. & Heuer, A. H. Bioinspired micro-composite structure. J. Mater. Res. 22, 124–131 (2007).

    Article  CAS  Google Scholar 

  80. 80

    Corni, I. et al. A review of experimental techniques to produce a nacre-like structure. Bioinspir. Biomim. 7, 1–23 (2012).

    Article  CAS  Google Scholar 

  81. 81

    Espinosa, H. D., Rim, J. E., Barthelat, F. & Buehler, M. J. Merger of structure and material in nacre and bone — Perspectives on de novo biomimetic materials. Prog. Mater. Sci. 54, 1059–1100 (2009).

    Article  CAS  Google Scholar 

  82. 82

    Clegg, W. J., Kendall, K., Alford, N. M., Button, T. W. & Birchall, J. D. A simple way to make tough ceramics. Nature 347, 455–457 (1990).

    Article  CAS  Google Scholar 

  83. 83

    Wang, C. A., Huang, Y., Zan, Q. F., Zou, L. H. & Cai, S. Y. Control of composition and structure in laminated silicon nitride/boron nitride composites. J. Am. Ceram. Soc. 85, 2457–2461 (2002).

    Article  CAS  Google Scholar 

  84. 84

    Deville, S., Saiz, E., Nalla, R. K. & Tomsia, A. P. Freezing as a path to build complex composites. Science 311, 515–518 (2006).

    Article  CAS  Google Scholar 

  85. 85

    Munch, E. et al. Tough, bio-inspired hybrid materials. Science 322, 1516–1520 (2008).

    Article  CAS  Google Scholar 

  86. 86

    Liu, Q. et al. Fabrication of a new SiC/2024Al co-continuous composite with lamellar microstructure and high mechanical properties. J. Alloy Comp. 585, 146–153 (2014).

    Article  CAS  Google Scholar 

  87. 87

    Roy, S., Butz, B. & Wanner, A. Damage evolution and domain-level anisotropy in metal/ceramic composites exhibiting lamellar microstructures. Acta Materialia 58, 2300–2312 (2010).

    Article  CAS  Google Scholar 

  88. 88

    Bouville, F. et al. Strong, tough and stiff bioinspired ceramics from brittle constituents. Nature Mater. 13, 508–514 (2014).

    Article  CAS  Google Scholar 

  89. 89

    Sen, D. & Buehler, M. J. Structural hierarchies define toughness and defect-tolerance despite simple and mechanically inferior brittle building blocks. Sci. Rep. 1, 35 (2011).

    Article  CAS  Google Scholar 

  90. 90

    Hunger, P. M., Donius, A. E. & Wegst, U. G. K. Platelets self-assemble into porous nacre during freeze casting. J. Mech. Behav. Biomed. Mater. 19, 87–93 (2013).

    Article  CAS  Google Scholar 

  91. 91

    Duro-Royoa, J. et al. MetaMesh: A hierarchical computational model for design and fabrication of biomimetic armor surfaces. Computer-Aided Design http://dx.doi.org/10.1016/j.cad.2014.05.005 (2014).

  92. 92

    Fu, Q. A., Saiz, E. & Tomsia, A. P. Bioinspired strong and highly porous glass scaffolds. Adv. Funct. Mater. 21, 1058–1063 (2011).

    Article  CAS  Google Scholar 

  93. 93

    Hollister, S. J. Porous scaffold design for tissue engineering. Nature Mater. 4, 518–524 (2005).

    Article  CAS  Google Scholar 

  94. 94

    Lewis, J. A. Direct ink writing of 3D functional materials. Adv. Funct. Mater. 16, 2193–2204 (2006).

    Article  CAS  Google Scholar 

  95. 95

    Lewis, J. A., Smay, J. E., Stuecker, J. & Cesarano, J. Direct ink writing of three-dimensional ceramic structures. J. Am. Ceram. Soc. 89, 3599–3609 (2006).

    Article  CAS  Google Scholar 

  96. 96

    Seerden, K. A. M. et al. Ink-jet printing of wax-based alumina suspensions. J. Am. Ceram. Soc. 84, 2514–2520 (2001).

    Article  CAS  Google Scholar 

  97. 97

    Duoss, E. B., Twardowski, M. & Lewis, J. A. Sol–gel inks for direct-write assembly of functional oxides. Adv. Mater. 19, 3485–3489 (2007).

    Article  CAS  Google Scholar 

  98. 98

    Pham, T. A. et al. Three-dimensional SiCN ceramic microstructures via nano-stereolithography of inorganic polymer photoresists. Adv. Funct. Mater. 16, 1235–1241 (2006).

    Article  CAS  Google Scholar 

  99. 99

    Mott, M., Song, J. H. & Evans, J. R. G. Microengineering of ceramics by direct ink-jet printing. J. Am. Ceram. Soc. 82, 1653–1658 (1999).

    Article  CAS  Google Scholar 

  100. 100

    Griffith, M. L. & Halloran, J. W. Freeform fabrication of ceramics via stereolithography. J. Am. Ceram. Soc. 79, 2601–2608 (1996).

    Article  CAS  Google Scholar 

  101. 101

    Smay, J. E., Gratson, G. M., Shepherd, R. F., Cesarano, J. & Lewis, J. A. Directed colloidal assembly of 3D periodic structures. Adv. Mater. 14, 1279–1283 (2002).

    Article  CAS  Google Scholar 

  102. 102

    Villar, G., Graham, A. D. & Bayley, H. A tissue-like printed material. Science 340, 48–52 (2013).

    Article  CAS  Google Scholar 

  103. 103

    Grunenfelder, L. K. et al. Bio-inspired impact-resistant composites. Acta Biomater. 10, 3997–4008 (2014).

    Article  CAS  Google Scholar 

  104. 104

    Facchini, L., Magalini, E., Robotti, P. & Molinari, A. Microstructure and mechanical properties of Ti-6Al-4V produced by electron beam melting of pre-alloyed powders. Rapid Prototyp. J. 15, 171–178 (2009).

    Article  Google Scholar 

  105. 105

    Genet, M., Houmard, M., Eslava, S., Saiz, E. & Tomsia, A. P. A two-scale Weibull approach to the failure of porous ceramic structures made by robocasting: Possibilities and limits. J. Eur. Ceram. Soc. 33, 679–688 (2013).

    Article  CAS  Google Scholar 

  106. 106

    Murr, L. E. et al. Characterization of titanium aluminide alloy components fabricated by additive manufacturing using electron beam melting. Acta Materialia 58, 1887–1894 (2010).

    Article  CAS  Google Scholar 

  107. 107

    Mirkhalaf, M., Khayer Dastjerdi, A. & Barthelat, F. Overcoming the brittleness of glass through bio-inspiration and micro-architecture. Nature Commun. 5, 3166 (2014).

    Article  CAS  Google Scholar 

  108. 108

    Greer, J. R. & Nix, W. D. Size dependence in mechanical properties of gold at the micron scale in the absence of strain gradients. Appl. Phys. A 90, 203–203 (2008).

    Article  CAS  Google Scholar 

  109. 109

    Wang, J. L., Lian, J., Greer, J. R., Nix, W. D. & Kim, K. S. Size effect in contact compression of nano- and microscale pyramid structures. Acta Materialia 54, 3973–3982 (2006).

    Article  CAS  Google Scholar 

  110. 110

    Wilhelmsson, O. et al. Intrusion-type deformation in epitaxial Ti3SiC2/TiC0.67 nanolaminates. Appl. Phys. Lett. 91, 123124 (2007).

    Article  CAS  Google Scholar 

  111. 111

    Begley, M. R. et al. Micromechanical models to guide the development of synthetic 'brick and mortar' composites. J. Mech. Phys. Solids 60, 1545–1560 (2012).

    Article  CAS  Google Scholar 

  112. 112

    Bosia, F., Buehler, M. J. & Pugno, N. M. Hierarchical simulations for the design of supertough nanofibers inspired by spider silk. Phys. Rev. E 82, 056103 (2010).

    Article  CAS  Google Scholar 

  113. 113

    Cranford, S. W., Tarakanova, A., Pugno, N. M. & Buehler, M. J. Nonlinear material behaviour of spider silk yields robust webs. Nature 482, 72–91 (2012).

    Article  CAS  Google Scholar 

  114. 114

    Dimas, L. S., Bratzel, G. H., Eylon, I. & Buehler, M. J. Tough composites inspired by mineralized natural materials: Computation, 3D printing, and testing. Adv. Funct. Mater. 23, 4629–4638 (2013).

    Article  CAS  Google Scholar 

  115. 115

    Garcia, A. P., Pugno, N. & Buehler, M. J. Superductile, wavy silica nanostructures inspired by diatom algae. Adv. Eng. Mater. 13, B405–B414 (2011).

    Article  CAS  Google Scholar 

  116. 116

    Wilbrink, D. V., Utz, M., Ritchie, R. O. & Begley, M. R. Scaling of strength and ductility in bioinspired brick and mortar composites. Appl. Phys. Lett. 97, 193701 (2010).

    Article  CAS  Google Scholar 

  117. 117

    Pollock, T. M. et al. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security (National Academies, 2008).

    Google Scholar 

  118. 118

    Jang, D. C., Meza, L. R., Greer, F. & Greer, J. R. Fabrication and deformation of three-dimensional hollow ceramic nanostructures. Nature Mater. 12, 893–898 (2013).

    Article  CAS  Google Scholar 

  119. 119

    Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

    Article  CAS  Google Scholar 

  120. 120

    Hansen, C. J. et al. Self-healing materials with interpenetrating microvascular networks. Adv. Mater. 21, 4143–4147 (2009).

    Article  CAS  Google Scholar 

  121. 121

    Erb, R. M., Sander, J. S., Grisch, R. & Studart, A. R. Self-shaping composites with programmable bioinspired microstructures. Nature Commun. 4, 1712 (2013).

    Article  CAS  Google Scholar 

  122. 122

    Gosline, J. M., Guerette, P. A., Ortlepp, C. S. & Savage, K. N. The mechanical design of spider silks: From fibroin sequence to mechanical function. J. Exp. Biol. 202, 3295–3303 (1999).

    CAS  Google Scholar 

  123. 123

    Buckwalter, J. A., Glimcher, M. J., Cooper, R. R. & Recker, R. Bone biology.1: Structure, blood-supply, cells, matrix, and mineralization. J. Bone Joint Surg. Am. 77A, 1256–1275 (1995).

    Article  Google Scholar 

  124. 124

    Lakes, R. Materials with structural hierarchy. Nature 361, 511–515 (1993).

    Article  Google Scholar 

  125. 125

    Li, X. D., Xu, Z. H. & Wang, R. Z. In situ observation of nanograin rotation and deformation in nacre. Nano Lett. 6, 2301–2304 (2006).

    Article  CAS  Google Scholar 

  126. 126

    Wegst, U. G. K., Schecter, M., Donius, A. E. & Hunger, P. M. Biomaterials by freeze casting. Phil. Trans. R. Soc. A 368, 2099–2121 (2010).

    Article  CAS  Google Scholar 

  127. 127

    Deville, S., Saiz, E. & Tomsia, A. P. Ice-templated porous alumina structures. Acta Materialia 55, 1965–1974 (2007).

    Article  CAS  Google Scholar 

  128. 128

    Gao, H. J., Ji, B. H., Jager, I. L., Arzt, E. & Fratzl, P. Materials become insensitive to flaws at nanoscale: Lessons from nature. Proc. Natl Acad. Sci. USA 100, 5597–5600 (2003).

    Article  CAS  Google Scholar 

  129. 129

    Ritchie, R. O. Mechanisms of fatigue crack propagation in metals, ceramics and composites: Role of crack tip shielding. Mater. Sci. Eng. A 103, 15–28 (1988).

    Article  Google Scholar 

  130. 130

    Evans, A. G. Perspective on the development of high-toughness ceramics. J. Am. Ceram. Soc. 72, 187–206 (1990).

    Article  Google Scholar 

  131. 131

    Williams, J. G. & Ewing, P. D. Fracture under complex stress — the angled crack problem. Int. J. Fracture 26, 346–351 (1984).

    Article  Google Scholar 

  132. 132

    Irwin, G. R. Analysis of stresses and strains near the end of a crack traversing a plate. J. Appl. Mech. 24, 361–364 (1957).

    Google Scholar 

  133. 133

    Rice, J. R. A path independent integral and approximate analysis of strain concentration by notches and cracks. J. Appl. Mech. 35, 379–386 (1968).

    Article  Google Scholar 

  134. 134

    Bruet, B. J. F., Song, J. H., Boyce, M. C. & Ortiz, C. Materials design principles of ancient fish armour. Nature Mater. 7, 748–756 (2008).

    Article  CAS  Google Scholar 

  135. 135

    Haghpanah, B., Chiu, S. H. & Vaziri, A. Adhesively bonded lap joints with extreme interface geometry. Int. J. Adhes. Adhes. 48, 130–138 (2014).

    Article  CAS  Google Scholar 

  136. 136

    Suresh, S. & Mortensen, A. Functionally graded metals and metal-ceramic composites. 2: Thermomechanical behaviour. Int. Mater. Rev. 42, 85–116 (1997).

    Article  CAS  Google Scholar 

  137. 137

    Marshall, D. B. & Cox, B. N. Integral textile ceramic structures. Annu. Rev. Mater. Res. 38, 425–443 (2008).

    Article  CAS  Google Scholar 

  138. 138

    Haghpanah, B., Oftadeh, R., Papadopoulos, J. & Vaziri, A. Self-similar hierarchical honeycombs. Proc. R. Soc. A 469, 2156 (2013).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Mechanical Behavior of Materials Program at Lawrence Berkeley National Laboratory, funded by the U.S. Department of Energy, Office of Basic Energy Sciences, Materials Sciences and Engineering Division, under Contract No. DE-AC02-05CH11231. U.G.K.W. acknowledges support from the National Science Foundation through CMMI-1200408. E.S. acknowledges support from the European Commission (FP7 Programme, reintegration grant BISM). We are grateful to many colleagues and collaborators, J. Kerr and M. Snead in particular, for helpful discussions. We would also like to thank S. Russell for helpful comments in editing this manuscript, and A. Lapp and Z. Deretsky from LevelFive.com for help with the figures.

Author information

Affiliations

Authors

Contributions

All authors contributed equally to this work.

Corresponding authors

Correspondence to Ulrike G. K. Wegst or Robert O. Ritchie.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wegst, U., Bai, H., Saiz, E. et al. Bioinspired structural materials. Nature Mater 14, 23–36 (2015). https://doi.org/10.1038/nmat4089

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing