Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Acoustic metasurface with hybrid resonances



An impedance-matched surface has the property that an incident wave generates no reflection. Here we demonstrate that by using a simple construction, an acoustically reflecting surface can acquire hybrid resonances and becomes impedance-matched to airborne sound at tunable frequencies, such that no reflection is generated. Each resonant cell of the metasurface is deep-subwavelength in all its spatial dimensions, with its thickness less than the peak absorption wavelength by two orders of magnitude. As there can be no transmission, the impedance-matched acoustic wave is hence either completely absorbed at one or multiple frequencies, or converted into other form(s) of energy, such as an electrical current. A high acoustic–electrical energy conversion efficiency of 23% is achieved.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Geometry and resonance characteristics of the metasurface’s unit cell.
Figure 2: Manifestations of the hybrid resonance and its energy conversion functionality.
Figure 4: Unity (>0.99) absorption attained at tunable multiple frequencies.
Figure 3: Relationships between different parameters at the impedance-matched hybrid resonant frequency.


  1. 1

    De Rosny, J. & Fink, M. Overcoming the diffraction limit in wave physics using a time-reversal mirror and a novel acoustic sink. Phys. Rev. Lett. 89, 124301 (2002).

    CAS  Article  Google Scholar 

  2. 2

    Derode, A., Roux, P. & Fink, M. Robust acoustic time reversal with high-order multiple scattering. Phys. Rev. Lett. 75, 4206–4209 (1995).

    CAS  Article  Google Scholar 

  3. 3

    Fink, M. Time reversed acoustics. Phys. Today 50, 34–40 (March, 1997).

    Article  Google Scholar 

  4. 4

    Arenas, J. P. & Crocker, M. J. Recent trends in porous sound-absorbing materials. J. Sound Vib. 44, 12–18 (2010).

    Google Scholar 

  5. 5

    Maa, D-Y. Potential of microperforated panel absorber. J. Acoust. Soc. Am. 104, 2861 (1998).

    Article  Google Scholar 

  6. 6

    Fuchs, H. V. & Zha, X. Micro-perforated structures as sound absorbers—a review and outlook. Acta. Acust. United Acc. 92, 139–146 (2006).

    Google Scholar 

  7. 7

    Maa, D-Y. Practical single MPP absorber. Int. J. Acoust. Vib. 12, 3–6 (2007).

    Google Scholar 

  8. 8

    Liang, Z. & Li, J. Extreme acoustic metamaterial by coiling up space. Phys. Rev. Lett. 108, 114301 (2012).

    Article  Google Scholar 

  9. 9

    Liang, Z. et al. Space-coiling metamaterials with double negativity and conical dispersion. Sci. Rep. 3, 1614 (2013).

    CAS  Article  Google Scholar 

  10. 10

    Xie, Y., Popa, B-I., Zigoneanu, L. & Cummer, S. A. Measurement of a broadband negative index with space-coiling acoustic metamaterials. Phys. Rev. Lett. 110, 175501 (2013).

    Article  Google Scholar 

  11. 11

    Xie, Y., Konneker, A., Popa, B-I. & Cummer, S. A. Tapered labyrinthine acoustic metamaterials for broadband impedance matching. Appl. Phys. Lett. 103, 201906 (2013).

    Article  Google Scholar 

  12. 12

    Scheuren, J. Handbook of Engineering Acoustics 301–334 (Springer, 2013).

    Book  Google Scholar 

  13. 13

    Yu, N. et al. Light propagation with phase discontinuities: Generalized laws of reflection and refraction. Science 334, 333–337 (2011).

    CAS  Article  Google Scholar 

  14. 14

    Ni, X., Emani, N. K., Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Broadband light bending with plasmonic nanoantennas. Science 335, 427 (2012).

    CAS  Article  Google Scholar 

  15. 15

    Kildishev, A. V., Boltasseva, A. & Shalaev, V. M. Planar photonics with metasurfaces. Science 339, 1232009 (2013).

    Article  Google Scholar 

  16. 16

    Yin, X., Ye, Z., Rho, J., Wang, Y. & Zhang, X. Photonic spin Hall effect at metasurfaces. Science 339, 1405–1407 (2013).

    CAS  Article  Google Scholar 

  17. 17

    Chong, Y., Ge, L., Cao, H. & Stone, A. D. Coherent perfect absorbers: Time-reversed lasers. Phys. Rev. Lett. 105, 053901 (2010).

    CAS  Article  Google Scholar 

  18. 18

    Wan, W. et al. Time-reversed lasing and interferometric control of absorption. Science 331, 889–892 (2011).

    CAS  Article  Google Scholar 

  19. 19

    Pu, M. et al. Ultrathin broadband nearly perfect absorber with symmetrical coherent illumination. Opt. Express 20, 2246–2254 (2012).

    CAS  Article  Google Scholar 

  20. 20

    Park, J. J., Lee, K. J. B., Wright, O. B., Jung, M. K. & Lee, S. H. Giant acoustic concentration by extraordinary transmission in zero-mass metamaterials. Phys. Rev. Lett. 110, 244302 (2013).

    Article  Google Scholar 

  21. 21

    Fleury, R. & Alù, A. Extraordinary sound transmission through density-near-zero ultranarrow channels. Phys. Rev. Lett. 111, 055501 (2013).

    Article  Google Scholar 

  22. 22

    Yang, Z., Mei, J., Yang, M., Chan, N. H. & Sheng, P. Membrane-type acoustic metamaterial with negative dynamic mass. Phys. Rev. Lett. 101, 204301 (2008).

    CAS  Article  Google Scholar 

  23. 23

    Yang, Z., Dai, H., Chan, N., Ma, G. & Sheng, P. Acoustic metamaterial panels for sound attenuation in the 50–1000 Hz regime. Appl. Phys. Lett. 96, 041906 (2010).

    Article  Google Scholar 

  24. 24

    Mei, J., Ma, G., Yang, M., Yang, J. & Sheng, P. Dynamic Mass Density and Acoustic Metamaterials. Acoustic Metamaterials and Phononic Crystals (Springer, 2013).

    Google Scholar 

  25. 25

    Ma, G., Yang, M., Yang, Z. & Sheng, P. Low-frequency narrow-band acoustic filter with large orifice. Appl. Phys. Lett. 103, 011903 (2013).

    Article  Google Scholar 

  26. 26

    Yang, M., Ma, G., Yang, Z. & Sheng, P. Coupled membranes with doubly negative mass density and bulk modulus. Phys. Rev. Lett. 110, 134301 (2013).

    Article  Google Scholar 

  27. 27

    Mei, J. et al. Dark acoustic metamaterials as super absorbers for low-frequency sound. Nature Commun. 3, 756 (2012).

    Article  Google Scholar 

  28. 28

    Yang, M., Ma, G., Wu, Y., Yang, Z. & Sheng, P. Homogenization scheme for acoustic metamaterials. Phys. Rev. B 89, 064309 (2014).

    Article  Google Scholar 

  29. 29

    Horowitz, S. B. & Sheplak, M. Aeroacoustic applications of acoustic energy harvesting. J. Acoust. Soc. Am. 134, 4155 (2013).

    Article  Google Scholar 

  30. 30

    Horowitz, S. B., Sheplak, M., Cattafesta, L. N.III & Nishida, T. A MEMS acoustic energy harvester. J. Micromech. Microeng. 16, S174–S181 (2006).

    Article  Google Scholar 

  31. 31

    Cha, S. N. et al. Sound-driven piezoelectric nanowirebased nanogenerators. Adv. Mater. 22, 4726–4730 (2010).

    CAS  Article  Google Scholar 

  32. 32

    Qin, Y., Wang, X. & Wang, Z. L. Microfibre–nanowire hybrid structure for energy scavenging. Nature 451, 809–813 (2008).

    CAS  Article  Google Scholar 

  33. 33

    Wang, X., Song, J., Liu, J. & Wang, Z. L. Direct-current nanogenerator driven by ultrasonic waves. Science 316, 102–105 (2007).

    CAS  Article  Google Scholar 

  34. 34

    Fan, F-R., Tian, Z-Q. & Wang, Z. L. Flexible triboelectric generator. Nano Energ. 1, 328–334 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Zhu, G. et al. Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. Nano Lett. 13, 847–853 (2013).

    CAS  Article  Google Scholar 

  36. 36

    Ladabaum, I., Jin, X., Soh, H. T., Atalar, A. & Khuri-Yakub, B. T. Surface micromachined capacitive ultrasonic transducers. IEEE. Trans. Ultrason. Ferrelectr. Freq. Control 45, 678–690 (1998).

    CAS  Article  Google Scholar 

  37. 37

    Ergun, A. S., Yaralioglu, G. G. & Khuri-Yakub, B. T. Capacitive micromachined ultrasonic transducers: Theory and technology. J. Aerospace Eng. 16, 76–84 (2003).

    Article  Google Scholar 

  38. 38

    Roes, M., Hendrix, M. & Duarte, J. IECON 2011–37th Annual Conference on IEEE Industrial Electronics Society 1238–1243 (2011)

  39. 39

    Shmilovitz, D., Ozeri, S., Wang, C. & Spivak, B. Noninvasive control of the implant power for an ultrasonic transcutaneous energy transfer device. IEEE Trans. Biomed. Eng. 61, 995–1004 (2013).

    Article  Google Scholar 

  40. 40

    Fox, J. D., Kino, G. S. & Khuri-Yakub, B. T. Acoustic microscopy in air at 2 MHz. Appl. Phys. Lett. 47, 465–467 (1985).

    Article  Google Scholar 

  41. 41

    Ho, K. M., Yang, Z., Zhang, X. X. & Sheng, P. Measurements of sound transmission through panels of locally resonant materials between impedance tubes. Appl. Acoust. 66, 751–765 (2005).

    Article  Google Scholar 

Download references


P.S. and M.Y. wish to thank Ying Wu and Jun Mei for helpful discussions. This work is supported by AoE/P-02/12 and HKUST2/CRF/11G.

Author information




P.S. initiated, designed and supervised the project. M.Y. and P.S. provided the theoretical framework. G.M. designed and carried out the experiments. S.X. assisted with the experiments. M.Y. carried out the numerical simulations. G.M., M.Y., Z.Y. and P.S. analysed the data. G.M., M.Y. and P.S. wrote the manuscript.

Corresponding author

Correspondence to Ping Sheng.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ma, G., Yang, M., Xiao, S. et al. Acoustic metasurface with hybrid resonances. Nature Mater 13, 873–878 (2014).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing