Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems

Abstract

Dealloying, the selective dissolution of one or more of the elemental components of an alloy, is an important corrosion mechanism and a technologically relevant process used to fabricate nanoporous metals for a variety of applications including catalysis1, sensing2, actuation3, supercapacitors4 and radiation-damage-resistant materials5. In noble-metal alloy systems for which the ambient-temperature solid-state diffusivity is minuscule, dealloying occurs at a composition-dependent critical potential above which bicontinuous nanoporous structures evolve and below which a full-coverage layer of the more-noble component forms causing the alloy surface to become passive6,7. In contrast, for alloy systems exhibiting significant solid-state diffusive transport, our understanding of dealloying-induced morphologies and the electrochemical parameters controlling this are largely unexplored. Here, we examine dealloying of Li from Li–Sn alloys and show that depending on alloy composition, particle size and dealloying rate, all known dealloyed morphologies evolve including bicontinuous nanoporous structures and hollow core–shell particles. Furthermore, we elucidate the role of bulk diffusion in morphology evolution using chronopotentiometry and linear sweep voltammetry. Our results may have implications for lithium-ion battery development while significantly broadening the spectrum of strategies for obtaining new nanoporous materials through dealloying.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Dealloyed structures and steady-state length scales.
Figure 2: Potentiostatic dealloying (1 V versus Li+/Li) results of Sn particle morphologies as a function of Li composition obtained by a single alloying/dealloying cycle in 1 M LiPF6 in ethylene carbonate/diethylcarbonate, 1:1 v/v at room temperature.
Figure 3: The effect of particle size on dealloyed morphologies.
Figure 4: The effect of dealloying rate on morphology evolution.

Similar content being viewed by others

References

  1. Snyder, J., Fujita, T., Chen, M. W. & Erlebacher, J. Oxygen reduction in nanoporous metal-ionic liquid composite electrocatalysts. Nature Mater. 9, 904–907 (2010).

    Article  CAS  Google Scholar 

  2. Hu, K., Lan, D., Li, X. & Zhang, S. Electrochemical DNA biosensor based on nanoporous gold electrode and multifunctional encoded DNA-Au bio bar codes. Anal. Chem. 80, 9124–9130 (2008).

    Article  CAS  Google Scholar 

  3. Biener, J. et al. Surface-chemistry-driven actuation in nanoporous gold. Nature Mater. 8, 47–51 (2009).

    Article  CAS  Google Scholar 

  4. Choi, J. W. et al. Stepwise nanopore evolution in one-dimensional nanostructures. Nano Lett. 10, 1409–1413 (2010).

    Article  CAS  Google Scholar 

  5. Bringa, E. M. et al. Are nanoporous materials radiation resistant? Nano Lett. 12, 3351–3355 (2012).

    Article  CAS  Google Scholar 

  6. Sieradzki, K. et al. The dealloying critical potential. J. Electrochem. Soc. 149, B370–B377 (2002).

    Article  CAS  Google Scholar 

  7. Rugolo, J., Erlebacher, J. & Sieradzki, K. Length scales in alloy dissolution and measurement of absolute interfacial free energy. Nature Mater. 5, 946–949 (2006).

    Article  CAS  Google Scholar 

  8. Mallard, W., Gardner, A., Bass, R. F. & Slifkin, L. Self-diffusion in silver-gold solid solutions. Phys. Rev. 129, 617–625 (1963).

    Article  CAS  Google Scholar 

  9. Sieradzki, K., Corderman, R., Shukla, K. & Newman, R. C. R. Computer simulations of corrosion: Selective dissolution of binary alloys. Phil. Mag. A 59, 713–746 (1989).

    Article  CAS  Google Scholar 

  10. Li, R. & Sieradzki, K. Ductile-brittle transition in random porous Au. Phys. Rev. Lett. 68, 1168–1171 (1992).

    Article  CAS  Google Scholar 

  11. Erlebacher, J., Aziz, M., Karma, A., Dimitrov, N. & Sieradzki, K. Evolution of nanoporosity in dealloying. Nature 410, 450–453 (2001).

    Article  CAS  Google Scholar 

  12. Chen, Q. & Sieradzki, K. Mechanisms and morphology evolution in dealloying. J. Electrochem. Soc. 160, C226–C231 (2013).

    Article  CAS  Google Scholar 

  13. Huggins, R. A. Lithium alloy negative electrodes. J. Power Sources 81–82, 13–19 (1999).

    Article  Google Scholar 

  14. Courtney, I., Tse, J., Mao, O., Hafner, J. & Dahn, J. Ab initio calculation of the lithium-tin voltage profile. Phys. Rev. B 58, 15583–15588 (1998).

    Article  CAS  Google Scholar 

  15. Chou, C., Kim, H. & Hwang, G. A comparative first-principles study of the structure, energetics, and properties of Li–M (M = Si, Ge, Sn) alloys. J. Phys. Chem. C 115, 20018–20026 (2011).

    Article  CAS  Google Scholar 

  16. Wang, J., Raistrick, I. & Huggins, R. Behavior of some binary lithium alloys as negative electrodes in organic solvent-based electrolytes. J. Electrochem. Soc. 133, 457–460 (1986).

    Article  CAS  Google Scholar 

  17. Flynn, C. P. Why is diffusion in metals and on metal surfaces universal? J. Phys. Condens. Matter 18, S439–S445 (2006).

    Article  CAS  Google Scholar 

  18. Liu, X. H. et al. Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: An in situ transmission electron microscopy study. Nano Lett. 11, 3991–3997 (2011).

    Article  CAS  Google Scholar 

  19. Artymowicz, D. M., Erlebacher, J. & Newman, R. C. Relationship between the parting limit for de-alloying and a particular geometric high-density site percolation threshold. Phil. Mag. 89, 1663–1693 (2009).

    Article  CAS  Google Scholar 

  20. Snyder, J., McCue, I., Livi, K. & Erlebacher, J. Structure/processing/properties relationships in nanoporous nanoparticles as applied to catalysis of the cathodic oxygen reduction reaction. J. Am. Chem. Soc. 134, 8633–8645 (2012).

    Article  CAS  Google Scholar 

  21. Li, X. Electrochemical Stability of Nanoscale Electrodes PhD thesis, Arizona State Univ. (2012).

  22. Todd, A. D. W., Ferguson, P. P., Fleischauer, M. D. & Dahn, J. R. Tin-based materials as negative electrodes for Li-ion batteries: Combinatorial approaches and mechanical methods. Int. J. Energy Res. 34, 535–555 (2010).

    Article  Google Scholar 

  23. Bard, A. J. & Faulkner, L. R. Electrochemical Methods: Fundamentals and Applications 228–231 (Wiley, 2000).

    Google Scholar 

  24. Chan, C. K. et al. High-performance lithium battery anodes using silicon nanowires. Nature Nanotech. 3, 31–35 (2008).

    Article  CAS  Google Scholar 

  25. Yu, Y. et al. Li storage in 3D nanoporous Au-supported nanocrystalline tin. Adv. Mater. 23, 2443–2447 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to thank C. K. Chan and J. Erlebacher for valuable discussions. This work was supported by the National Science Foundation under award DMR-0855969.

Author information

Authors and Affiliations

Authors

Contributions

Q.C. and K.S. designed the research and wrote the manuscript. Q.C. performed the experiments.

Corresponding author

Correspondence to Karl Sieradzki.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1969 kb)

Supplementary Information

Supplementary Movie S1 (MOV 8265 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, Q., Sieradzki, K. Spontaneous evolution of bicontinuous nanostructures in dealloyed Li-based systems. Nature Mater 12, 1102–1106 (2013). https://doi.org/10.1038/nmat3741

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3741

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing