Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity


Hydrogels attract great attention as biomaterials as a result of their soft and wet nature, similar to that of biological tissues. Recent inventions of several tough hydrogels show their potential as structural biomaterials, such as cartilage. Any given application, however, requires a combination of mechanical properties including stiffness, strength, toughness, damping, fatigue resistance and self-healing, along with biocompatibility. This combination is rarely realized. Here, we report that polyampholytes, polymers bearing randomly dispersed cationic and anionic repeat groups, form tough and viscoelastic hydrogels with multiple mechanical properties. The randomness makes ionic bonds of a wide distribution of strength. The strong bonds serve as permanent crosslinks, imparting elasticity, whereas the weak bonds reversibly break and re-form, dissipating energy. These physical hydrogels of supramolecular structure can be tuned to change multiple mechanical properties over wide ranges by using diverse ionic combinations. This polyampholyte approach is synthetically simple and dramatically increases the choice of tough hydrogels for applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Schematics of physical hydrogels composed of polyampholytes.
Figure 2: The effect of monomer concentration on the physical properties of polyampholytes.
Figure 3: Self-recovery, fatigue resistance, adhesion and self-healing behaviours of polyampholyte hydrogels.
Figure 4: The effect of saline solution and deformation rate on properties of polyampholyte hydrogels P(NaSS-co-MPTC) 2.1–0.525.


  1. 1

    Yasuda, K. et al. A novel double-network hydrogel induces spontaneous articular cartilage regeneration in vivo in a large osteochondral defect. Macromol. Biosci. 9, 307–316 (2009).

    CAS  Article  Google Scholar 

  2. 2

    Drury, J. L. & Mooney, D. J. Hydrogels for tissue engineering: Scaffold design variables and applications. Biomaterials 24, 4337–4351 (2003).

    CAS  Article  Google Scholar 

  3. 3

    Bodugoz-Senturk, H., Macias, C. E., Kung, J. H. & Muratoglu, O. K. Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials 30, 589–596 (2009).

    CAS  Article  Google Scholar 

  4. 4

    Tanaka, Y., Fukao, K. & Miyamoto, Y. Fracture energy of gels. Eur. Phys. J. E 3, 395–401 (2000).

    CAS  Article  Google Scholar 

  5. 5

    Baumberger, T., Caroli, C. & Martina, D. Solvent control of crack dynamics in a reversible hydrogel. Nature Mater. 5, 552–555 (2006).

    CAS  Article  Google Scholar 

  6. 6

    Naficy, S., Brown, H. R., Razal, J. M., Spinks, G. M. & Whitten, P. G. Progress toward robust polymer hydrogels. Aust. J. Chem. 64, 1007–1025 (2011).

    CAS  Article  Google Scholar 

  7. 7

    Haraguchi, K. & Takehisa, T. Nanocomposite hydrogels: A unique organic-inorganic network structure with extraordinary mechanical, optical, and swelling/de-swelling properties. Adv. Mater. 14, 1120–1124 (2002).

    CAS  Article  Google Scholar 

  8. 8

    Gong, J. P., Katsuyama, Y., Kurokawa, T. & Osada, Y. Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15, 1155–1158 (2003).

    CAS  Article  Google Scholar 

  9. 9

    Huang, T. et al. A novel hydrogel with high mechanical strength: A macromolecular microsphere composite hydrogel. Adv. Mater. 19, 1622–1626 (2007).

    CAS  Article  Google Scholar 

  10. 10

    Moutos, F. T., Freed, L. E. & Guilak, F. A biomimetic three-dimensional woven composite scaffold for functional tissue engineering of cartilage. Nature Mater 6, 162–167 (2007).

    CAS  Article  Google Scholar 

  11. 11

    Fung, Y. C. Biomechanics: Mechanical Properties of Living Tissues 2nd edn (Springer, 1993).

    Google Scholar 

  12. 12

    Gong, J. P. Why are double network hydrogels so tough? Soft Matter 6, 2583–2590 (2010).

    CAS  Article  Google Scholar 

  13. 13

    Na, Y. H. et al. Necking phenomenon of double-network gels. Macromolecules 39, 4641–4645 (2006).

    CAS  Article  Google Scholar 

  14. 14

    Webber, R. E., Creton, C., Brown, H. R. & Gong, J. P. Large strain hysteresis and mullins effect of tough double-network hydrogels. Macromolecules 40, 2919–2927 (2007).

    CAS  Article  Google Scholar 

  15. 15

    Fantner, G. E. et al. Sacrificial bonds and hidden length dissipate energy as mineralized fibrils separate during bone fracture. Nature Mater. 4, 612–616 (2005).

    CAS  Article  Google Scholar 

  16. 16

    Henderson, K. J., Zhou, T. C., Otim, K. J. & Shull, K. R. Ionically cross-linked triblock copolymer hydrogels with high strength. Macromolecules 43, 6193–6201 (2010).

    CAS  Article  Google Scholar 

  17. 17

    Haque, M. A., Kurokawa, T., Kamita, G. & Gong, J. P. Lamellar bilayers as reversible sacrificial bonds to toughen hydrogel: Hysteresis, self-recovery, fatigue resistance, and crack blunting. Macromolecules 44, 8916–8924 (2011).

    CAS  Article  Google Scholar 

  18. 18

    Sun, J. Y. et al. Highly stretchable and tough hydrogels. Nature 489, 133–136 (2012).

    CAS  Article  Google Scholar 

  19. 19

    Higgs, P. G. & Joanny, J. F. Theory of polyampholyte solutions. J. Chem. Phys. 94, 1543–1554 (1991).

    CAS  Article  Google Scholar 

  20. 20

    Kudaibergenov, S. E. Recent advances in the study of synthetic polyampholytes in solutions. Adv. Polym. Sci. 144, 115–197 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Nisato, G., Munch, J. P. & Candau, S. J. Swelling, structure, and elasticity of polyampholyte hydrogels. Langmuir 15, 4236–4244 (1999).

    CAS  Article  Google Scholar 

  22. 22

    Pafiti, K. S., Philippou, Z., Loizou, E., Porcar, L. & Patrickios, C. S. End-linked poly[2-(dimethylamino)ethyl methacrylate]-poly(methacrylic acid) polyampholyte conetworks: Synthesis by sequential raft polymerization and swelling and sans characterization. Macromolecules 44, 5352–5362 (2011).

    CAS  Article  Google Scholar 

  23. 23

    Takeoka, Y. et al. First order phase transition and evidence for frustrations in polyampholytic gels. Phys. Rev. Lett. 82, 4863–4865 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Zavitsas, A. A. Quantitative relationship between bond dissociation energies, infrared stretching frequencies, and force-constants in polyatomic molecules. J. Phys. Chem. 91, 5573–5577 (1987).

    CAS  Article  Google Scholar 

  25. 25

    Holyst, R. Some features of soft matter systems. Soft Matter 1, 329–333 (2005).

    CAS  Article  Google Scholar 

  26. 26

    Yu, Q. M., Tanaka, Y., Furukawa, H., Kurokawa, T. & Gong, J. P. Direct observation of damage zone around crack tips in double-network gels. Macromolecules 42, 3852–3855 (2009).

    CAS  Article  Google Scholar 

  27. 27

    Persson, B. N. J. & Brener, E. A. Crack propagation in viscoelastic solids. Phys. Rev. E 71, 036123 (2005).

    CAS  Article  Google Scholar 

  28. 28

    Varley, R. J., Shen, S. & van der Zwaag, S. The effect of cluster plasticisation on the self healing behaviour of ionomers. Polymer 51, 679–686 (2010).

    CAS  Article  Google Scholar 

  29. 29

    Nakajima, T. et al. True chemical structure of double network hydrogels. Macromolecules 42, 2184–2189 (2009).

    CAS  Article  Google Scholar 

  30. 30

    Bauer, A. M., Russell, A. P. & Shadwick, R. E. Mechanical properties and morphological correlates of fragile skin in gekkonid lizards. J. Exp. Biol. 145, 79–102 (1989).

    Google Scholar 

  31. 31

    Taylor, D., O’Mara, N., Ryan, E., Takaza, M. & Simms, C. The fracture toughness of soft tissues. J. Mech. Behav. Biomed. Mater. 6, 139–147 (2012).

    Article  Google Scholar 

  32. 32

    Wang, Q. et al. High-water-content mouldable hydrogels by mixing clay and a dendritic molecular binder. Nature 463, 339–343 (2010).

    CAS  Article  Google Scholar 

  33. 33

    Nakahata, M., Takashima, Y., Yamaguchi, H. & Harada, A. Redox-responsive self-healing materials formed from host-guest polymers. Nature Commun. 2, 511–516 (2011).

    Article  Google Scholar 

  34. 34

    Zhang, M. M. et al. Self-healing supramolecular gels formed by crown ether based host–guest interactions. Angew. Chem. Int. Ed. 51, 7011–7015 (2012).

    CAS  Article  Google Scholar 

  35. 35

    Cordier, P., Tournilhac, F., Soulié-Ziakovic, C. & Leibler, L. Self-healing and thermoreversible rubber from supramolecular assembly. Nature 451, 977–980 (2008).

    CAS  Article  Google Scholar 

  36. 36

    Tanaka, Y. et al. Determination of fracture energy of high strength double network hydrogels. J. Phys. Chem. B 109, 11559–11562 (2005).

    CAS  Article  Google Scholar 

  37. 37

    Rivlin, R. S. & Thomas, A. G. Rupture of rubber. I. Characteristic energy for tearing. J. Polym. Sci. 10, 291–318 (1953).

    CAS  Article  Google Scholar 

Download references


This research was financially supported by a Grant-in-Aid for Scientific Research (S) (No. 124225006) from the Japan Society for the Promotion of Science (JSPS). We thank T. Narita and M. Nargis for beneficial discussion.

Author information




T.L.S., T.K. and J.P.G. designed the experiments. T.L.S., S.K., A.B.I., M.A.H., K.S. and T.A. performed the experiments. T.L.S., T.K., T.N. and J.P.G. analysed the data. T.L.S. and J.P.G. wrote the paper.

Corresponding author

Correspondence to Jian Ping Gong.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1476 kb)

Supplementary Information

Supplementary Movie S1 (MOV 2724 kb)

Supplementary Information

Supplementary Movie S2 (MOV 1623 kb)

Supplementary Information

Supplementary Movie S3 (MOV 1162 kb)

Supplementary Information

Supplementary Movie S4 (MOV 3971 kb)

Supplementary Information

Supplementary Movie S5 (MOV 6711 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Sun, T., Kurokawa, T., Kuroda, S. et al. Physical hydrogels composed of polyampholytes demonstrate high toughness and viscoelasticity. Nature Mater 12, 932–937 (2013).

Download citation

Further reading