Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Self-assembled nanoparticle arrays for multiphase trace analyte detection

This article has been updated

Abstract

Nanoplasmonic structures designed for trace analyte detection using surface-enhanced Raman spectroscopy typically require sophisticated nanofabrication techniques. An alternative to fabricating such substrates is to rely on self-assembly of nanoparticles into close-packed arrays at liquid/liquid or liquid/air interfaces. The density of the arrays can be controlled by modifying the nanoparticle functionality, pH of the solution and salt concentration. Importantly, these arrays are robust, self-healing, reproducible and extremely easy to handle. Here, we report on the use of such platforms formed by Au nanoparticles for the detection of multi-analytes from the aqueous, organic or air phases. The interfacial area of the Au array in our system is ≈25 mm2 and can be made smaller, making this platform ideal for small-volume samples, low concentrations and trace analytes. Importantly, the ease of assembly and rapid detection make this platform ideal for in-the-field sample testing of toxins, explosives, narcotics or other hazardous chemicals.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic of nanoparticle assembly at the LLI and MGITC detection.
Figure 2: Detection of analytes dissolved in the aqueous and organic interface.
Figure 3: Detection of analytes with either a weaker binding affinity to Au or a lower Raman cross-section.
Figure 4: Dual-analyte detection.
Figure 5: Airborne detection of MATT and aniline at a LAI.

Similar content being viewed by others

Change history

  • 27 November 2012

    In the version of this Article originally published online, in Fig. 1a, the second item in the legend should have read 'MGITC in organic phase'. In Fig. 1b, the fourth item in the legend should have read 'Organic phase'. These errors have been corrected in all versions of the Article.

  • 19 December 2012

    In the version of this Article originally published online, in Fig. 1b panel vi, the units on the bottom two curves (red and yellow) should have read 'fmol'. These errors have been corrected in all versions of the Article.

References

  1. Lefevre, F. et al. Algal fluorescence sensor integrated into a microfluidic chip for water pollutant detection. Lab Chip 12, 787–793 (2012).

    Article  CAS  Google Scholar 

  2. Byer, R. L. & Garbuny, M. Pollutant detection by absorption using mie scattering and topographic targets as retroreflectors. Appl. Opt. 12, 1496–1505 (1973).

    Article  CAS  Google Scholar 

  3. Pushkarsky, M. B. et al. High-sensitivity detection of TNT. Proc. Natl Acad. Sci. USA 103, 19630–19634 (2006).

    Article  CAS  Google Scholar 

  4. Sylvia, J. M., Janni, J. A., Klein, J. D. & Spencer, K. M. Surface-enhanced Raman detection of 2,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal. Chem. 72, 5834–5840 (2000).

    Article  CAS  Google Scholar 

  5. Anderson, G. P. et al. TNT detection using multiplexed liquid array displacement immunoassays. Anal. Chem. 78, 2279–2285 (2006).

    Article  CAS  Google Scholar 

  6. Kawano, R. et al. Rapid detection of a cocaine-binding aptamer using biological nanopores on a chip. J. Am. Chem. Soc. 133, 8474–8477 (2011).

    Article  CAS  Google Scholar 

  7. Zhang, J. et al. Visual cocaine detection with gold nanoparticles and rationally engineered aptamer structures. Small 4, 1196–1200 (2008).

    Article  CAS  Google Scholar 

  8. Liu, C. et al. Lateral flow immunochromatographic assay for sensitive pesticide detection by using Fe3O4 nanoparticle aggregates as color reagents. Anal. Chem. 83, 6778–6784 (2011).

    Article  CAS  Google Scholar 

  9. Kneipp, K. et al. Single molecule detection using surface-enhanced Raman scattering (SERS). Phys. Rev. Lett. 78, 1667–1670 (1997).

    Article  CAS  Google Scholar 

  10. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  Google Scholar 

  11. Liu, H. et al. Single molecule detection from a large-scale SERS-active Au79Ag21 substrate. Sci. Rep. 1, 112 (2011).

    Article  CAS  Google Scholar 

  12. Xu, J. Y. et al. SERS detection of explosive agent by macrocyclic compound functionalized triangular gold nanoprisms. J. Raman Spectrosc. 42, 1728–1735 (2011).

    Article  CAS  Google Scholar 

  13. Yang, L., Ma, L., Chen, G., Liu, J. & Tian, Z-Q. Ultrasensitive SERS detection of TNT by imprinting molecular recognition using a new type of stable substrate. Chemistry 16, 12683–12693 (2010).

    Article  CAS  Google Scholar 

  14. Carter, J. C., Brewer, W. E. & Angel, S. M. Raman spectroscopy for the in situ identification of cocaine and selected adulterants. Appl. Spectrosc. 54, 1876–1881 (2000).

    Article  CAS  Google Scholar 

  15. Bell, S. E. & Sirimuthu, N. M. Rapid, quantitative analysis of ppm/ppb nicotine using surface-enhanced Raman scattering from polymer-encapsulated Ag nanoparticles (gel-colls). Analyst 129, 1032–1036 (2004).

    Article  CAS  Google Scholar 

  16. Shende, C., Gift, A., Inscore, F., Maksymiuk, P., Farquharson, S., 1st edn, (eds Bennedsen, B. S. et al.) SPIE Vol. 5271, 28–34 (2004).

  17. Kelly, K. L., Coronado, E., Zhao, L. L. & Schatz, G. C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 107, 668–677 (2002).

    Article  Google Scholar 

  18. Yan, B. et al. Engineered SERS substrates with multiscale signal enhancement: Nanoparticle cluster arrays. ACS Nano 3, 1190–1202 (2009).

    Article  CAS  Google Scholar 

  19. Chen, A. et al. Self-assembled large Au nanoparticle arrays with regular hot spots for SERS. Small 7, 2365–2371 (2011).

    Article  CAS  Google Scholar 

  20. Cintra, S. et al. Sculpted substrates for SERS. Faraday Discuss. 132, 191–199 (2006).

    Article  CAS  Google Scholar 

  21. Mahajan, S., Baumberg, J. J., Russell, A. E. & Bartlett, P. N. Reproducible SERRS from structured gold surfaces. Phys. Chem. Chem. Phys. 9, 6016–6020 (2007).

    Article  CAS  Google Scholar 

  22. Dadosh, T. et al. Plasmonic control of the shape of the Raman spectrum of a single molecule in a silver nanoparticle dimer. ACS Nano 3, 1988–1994 (2009).

    Article  CAS  Google Scholar 

  23. Kahl, M., Voges, E., Kostrewa, S., Viets, C. & Hill, W. Periodically structured metallic substrates for SERS. Sens. Actuat. B 51, 285–291 (1998).

    Article  CAS  Google Scholar 

  24. Das, G. et al. Nano-patterned SERS substrate: Application for protein analysis versus temperature. Biosens. Bioelectron. 24, 1693–1699 (2009).

    Article  CAS  Google Scholar 

  25. Vignolini, S. et al. A 3D optical metamaterial made by self-assembly. Adv. Mater. 24, OP23–OP27 (2012).

    Article  CAS  Google Scholar 

  26. Hao, E. & Schatz, G. C. Electromagnetic fields around silver nanoparticles and dimers. J. Chem. Phys. 120, 357–366 (2004).

    Article  CAS  Google Scholar 

  27. Yang, Z-L., Li, Q-H., Ren, B. & Tian, Z-Q. Tunable SERS from aluminium nanohole arrays in the ultraviolet region. Chem. Commun. 47, 3909–3911 (2011).

    Article  CAS  Google Scholar 

  28. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marza’n, L. M. Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).

    Article  CAS  Google Scholar 

  29. Liu, S., Zhu, T., Hu, R. & Liu, Z. Evaporation-induced self-assembly of gold nanoparticles into a highly organized two-dimensional array. Phys. Chem. Chem. Phys. 4, 6059–6062 (2002).

    Article  CAS  Google Scholar 

  30. Boker, A., He, J., Emrick, T. & Russell, T. P. Self-assembly of nanoparticles at interfaces. Soft Matter 3, 1231–1248 (2007).

    Article  Google Scholar 

  31. Santos, H. A. et al. Electrochemical study of interfacial composite nanostructures: Polyelectrolyte/gold nanoparticle multilayers assembled on phospholipid/dextran sulfate monolayers at a liquid–liquid interface. J. Phys. Chem. B 109, 20105–20114 (2005).

    Article  CAS  Google Scholar 

  32. Du, K., Glogowski, E., Emrick, T., Russell, T. P. & Dinsmore, A. D. Adsorption energy of nano- and microparticles at liquid–liquid interfaces. Langmuir 26, 12518–12522 (2010).

    Article  CAS  Google Scholar 

  33. Pickering, S. U. Emulsions. J. Chem. Soc. D 91, 2021 (1907).

    Article  Google Scholar 

  34. Gordon, K. C., McGarvey, J. J. & Taylor, K. P. Enhanced Raman scattering from liquid metal films formed from silver sols. J. Phys. Chem. 93, 6814–6817 (1989).

    Article  CAS  Google Scholar 

  35. Oh, M. K., Yun, S., Kim, S. K. & Park, S. Effect of layer structures of gold nanoparticle films on surface enhanced Raman scattering. Anal. Chim. Acta 649, 111–116 (2009).

    Article  CAS  Google Scholar 

  36. Li, Y-J., Huang, W-J. & Sun, S-G. A Universal approach for the self-assembly of hydrophilic nanoparticles into ordered monolayer films at a toluene/water interface. Angew. Chem. Int. Ed. 45, 2537–2539 (2006).

    Article  CAS  Google Scholar 

  37. Luo, M. X., Song, Y. M. & Dai, L. L. Effects of methanol on nanoparticle self-assembly at liquid–liquid interfaces: A molecular dynamics approach. J. Chem. Phys. 131, 194703 (2009).

    Article  Google Scholar 

  38. Su, B. et al. reversible voltage-induced assembly of Au nanoparticles at liquid–liquid interfaces. J. Am. Chem. Soc. 126, 915–919 (2003).

    Article  Google Scholar 

  39. Flatté, M. E., Kornyshev, A. A. & Urbakh, M. Electrovariable nanoplasmonics and self-assembling smart mirrors. J. Phys. Chem. C 114, 1735–1747 (2010).

    Article  Google Scholar 

  40. Sauer, G., Brehm, G. & Schneider, S. Preparation of SERS-active gold film electrodes via electrocrystallization: Their characterization and application with NIR excitation. J. Raman Spectrosc. 35, 568–576 (2004).

    Article  CAS  Google Scholar 

  41. Kumar, G. V. P. et al. Hot spots in Ag core-Au shell nanoparticles potent for surface-enhanced raman scattering studies of biomolecules. J. Phys. Chem. C 111, 4388–4392 (2007).

    Article  CAS  Google Scholar 

  42. Jing, C. & Fang, Y. Experimental (SERS) and theoretical (DFT) studies on the adsorption behaviors of l-cysteine on gold/silver nanoparticles. Chem. Phys. 332, 27–32 (2007).

    Article  CAS  Google Scholar 

  43. Khaing Oo, M. K., Chang, C-F., Sun, Y. & Fan, X. Rapid, sensitive DNT vapor detection with UV-assisted photo-chemically synthesized gold nanoparticle SERS substrates. Analyst 136, 2811–2817 (2011).

    Article  Google Scholar 

  44. Turek, V. A. et al. Plasmonic ruler at the liquid–liquid interface. ACS Nano 6, 7789–7799 (2012).

    Article  CAS  Google Scholar 

  45. Turkevich, J. A study of the nucleation and growth processes in the synthesis of colloidal gold. Discuss. Faraday Soc. 11, 55–75 (1951).

    Article  Google Scholar 

  46. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nature 241, 20–22 (1973).

    CAS  Google Scholar 

  47. Liu, X., Atwater, M., Wang, J. & Huo, Q. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands. Colloids Surf. B 58, 3–7 (2007).

    Article  CAS  Google Scholar 

  48. Cecchini, M. P., Stapountzi, M. A., McComb, D. W., Albrecht, T. & Edel, J. B. Flow-based autocorrelation studies for the detection and investigation of single-particle surface-enhanced resonance Raman spectroscopic events. Anal. Chem. 83, 1418–1424 (2011).

    Article  CAS  Google Scholar 

  49. Cecchini, M. P. et al. Ultrafast surface enhanced resonance Raman scattering detection in droplet-based microfluidic system. Anal. Chem. 83, 3076–3081 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We are grateful to A. Kucernak (Imperial College), M. Urbakh (University of Tel Aviv) and S. Goodchild (DSTL) for illuminating discussions and inspiration. A.A.K. and J.B.E. thank the DSTL for financial support of this project. This work was also financially supported in part by an ERC starting investigator grant to J.B.E. and an EU FP7 ‘Nanodetector’ grant (NMP4-SE-2012-280478) to A.A.K.

Author information

Authors and Affiliations

Authors

Contributions

M.P.C., V.A.T., J.P., A.A.K. and J.B.E. designed the experiments, wrote the paper and analysed the results. M.P.C., V.A.T. and J.B.E. performed the experiments.

Corresponding authors

Correspondence to Alexei A. Kornyshev or Joshua B. Edel.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1366 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cecchini, M., Turek, V., Paget, J. et al. Self-assembled nanoparticle arrays for multiphase trace analyte detection. Nature Mater 12, 165–171 (2013). https://doi.org/10.1038/nmat3488

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3488

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing