Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Spin-current-driven thermoelectric coating

Abstract

Energy harvesting technologies1,2, which generate electricity from environmental energy, have been attracting great interest because of their potential to power ubiquitously deployed sensor networks and mobile electronics. Of these technologies, thermoelectric (TE) conversion is a particularly promising candidate, because it can directly generate electricity from the thermal energy that is available in various places3,4,5,6. Here we show a novel TE concept based on the spin Seebeck effect7,8,9,10,11, called ‘spin-thermoelectric (STE) coating’, which is characterized by a simple film structure, convenient scaling capability, and easy fabrication. The STE coating, with a 60-nm-thick bismuth-substituted yttrium iron garnet (Bi:YIG) film, is applied by means of a highly efficient process on a non-magnetic substrate. Notably, spin-current-driven TE conversion is successfully demonstrated under a temperature gradient perpendicular to such an ultrathin STE-coating layer (amounting to only 0.01% of the total sample thickness). We also show that the STE coating is applicable even on glass surfaces with amorphous structures. Such a versatile implementation of the TE function may pave the way for novel applications making full use of omnipresent heat.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Concept of the STE coating.
Figure 2: Demonstration of the STE coating.
Figure 3: TE-voltage generation increased by repeated STE coating.
Figure 4: STE coating on glass.

Similar content being viewed by others

References

  1. Hudak, N. S. & Amatucci, G. G. Small-scale energy harvesting through thermoelectric, vibration, and radiofrequency power conversion. J. Appl. Phys. 103, 101301 (2008).

    Article  Google Scholar 

  2. Leonov, V. & Vullers, R. J. M. Wearable electronics self-powered by using human body heat: The state of art and the perspective. J. Renew. Sustain. Energy 1, 062701 (2009).

    Article  Google Scholar 

  3. Rowe, D. M. (ed.) CRC Handbook of Thermoelectrics: Macro to Nano (CRC, 2005).

  4. Bell, L. E. Cooling, heating, generating power, and recovering waste heat with thermoelectric systems. Science 321, 1457–1461 (2008).

    Article  CAS  Google Scholar 

  5. Chowdhury, I. et al. On-chip cooling by superlattice-based thin-film thermoelectrics. Nature Nanotech. 4, 235–238 (2009).

    Article  CAS  Google Scholar 

  6. Goldsmid, H. J. (ed.) Introduction to Thermoelectricity (Springer, 2009).

  7. Uchida, K. et al. Observation of the spin-Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  8. Uchida, K. et al. Spin Seebeck insulator. Nature Mater. 9, 894–897 (2010).

    Article  CAS  Google Scholar 

  9. Jaworski, C. M. et al. Observaton of the spin-Seebeck effect in a ferromagnetic semiconductor. Nature Mater. 9, 898–903 (2010).

    Article  CAS  Google Scholar 

  10. Uchida, K. et al. Observation of the longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Article  Google Scholar 

  11. Uchida, K., Nonaka, T., Ota, T. & Saitoh, E. Longitudinal spin-Seebeck effect in sintered polycrystalline (Mn,Zn)Fe2O4 . Appl. Phys. Lett. 97, 262504 (2010).

    Article  Google Scholar 

  12. Kooi, C. F., Horst, R. B., Cuff, K. F. & Hawkins, S. R. Theory of the longitudinally isothermal Ettingshausen Cooler. J. Appl. Phys. 34, 1735–1742 (1963).

    Article  Google Scholar 

  13. Zahner, Th., Förg, R. & Lengfellner, H. Transverse thermoelectric response of a tilted metallic multilayer structure. Appl. Phys. Lett. 73, 1364–1366 (1998).

    Article  CAS  Google Scholar 

  14. Adachi, H. et al. Gigantic enhancement of spin Seebeck effect by phonon drag. Appl. Phys. Lett. 97, 252506 (2010).

    Article  Google Scholar 

  15. Jaworski, C. M. et al. Spin-Seebeck effect: A phonon driven spin distribution. Phys. Rev. Lett. 106, 186601 (2011).

    Article  CAS  Google Scholar 

  16. Uchida, K. et al. Long-range spin Seebeck effect and acoustic spin pumping. Nature Mater. 10, 737–741 (2011).

    Article  CAS  Google Scholar 

  17. Azevedo, A., Bharthulwar, S., Eppler, W. R. & Kryder, M. H. Deposition of garnet thin films by metallo-organic decomposion. IEEE Trans. Magn. 30, 4416–4418 (1994).

    Article  CAS  Google Scholar 

  18. Ishibashi, T. et al. Characterization of epitaxial (Y,Bi)3(Fe,Ga)5O12 thin films grown by metal–organic decomposition method. J. Appl. Phys. 97, 06516 (2005).

    Article  Google Scholar 

  19. Lee, H. et al. Magneto-optical imaging using a garnet indicator film prepared on glass substrates. J. Magn. Magn. Mater. 322, 2722–2727 (2010).

    Article  CAS  Google Scholar 

  20. Xiao, J., Bauer, G. E. W., Uchida, K., Saitoh, E. & Maekawa, S. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

    Article  Google Scholar 

  21. Adachi, H., Ohe, J., Takahashi, S. & Maekawa, S. Linear-response theory of spin Seebeck effect in ferromagnetic insulators. Phys. Rev. B 83, 094410 (2011).

    Article  Google Scholar 

  22. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  23. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  CAS  Google Scholar 

  24. Seki, T. et al. Giant spin Hall effect in perpendicularly spin-polarized FePt/Au devices. Nature Mater. 7, 125–129 (2008).

    Article  CAS  Google Scholar 

  25. Uchida, K., Kirihara, A., Ishida, M., Takahashi, R. & Saitoh, E. Local spin-Seebeck effect enabling two-dimensional position sensing. Jpn. J. Appl. Phys. 50, 120211 (2011).

    Article  Google Scholar 

  26. Jia, X., Liu, K., Xia, K. & Bauer, G. E. W. Spin transfer torque on magnetic insulators. Europhys. Lett. 96, 17005 (2011).

    Article  Google Scholar 

  27. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  28. Burrowes, C. et al. Enhanced spin pumping at yttrium iron garnet/Au interfaces. Appl. Phys. Lett. 100, 092403 (2012).

    Article  Google Scholar 

  29. Mosendz, O. et al. Quantifying spin Hall angles from spin pumping: experiments and theory. Phys. Rev. Lett. 104, 046601 (2010).

    Article  CAS  Google Scholar 

  30. Niimi, Y. et al. Extrinsic spin hall effect induced by iridium impurities in copper. Phys. Rev. Lett. 106, 126601 (2011).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank G. E. W. Bauer, S. Maekawa, H. Adachi, J. P. Heremans and S. Kohmoto for valuable discussions. This work was supported by a Grant-in-Aid for Scientific Research A (21244058) from MEXT, Japan, the global COE for the ‘Materials Integration International Centre of Education and Research’ from MEXT, Japan, and CREST-JST ‘Creation of Nanosystems with Novel Functions through Process Integration’, Japan.

Author information

Authors and Affiliations

Authors

Contributions

A.K., K.U., Y.K. and M.I. performed sample preparation and experiments. All the authors contributed to the discussion and analysis of the research.

Corresponding author

Correspondence to Akihiro Kirihara.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kirihara, A., Uchida, Ki., Kajiwara, Y. et al. Spin-current-driven thermoelectric coating. Nature Mater 11, 686–689 (2012). https://doi.org/10.1038/nmat3360

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3360

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing