Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Silicon spintronics

Abstract

Worldwide efforts are underway to integrate semiconductors and magnetic materials, aiming to create a revolutionary and energy-efficient information technology in which digital data are encoded in the spin of electrons. Implementing spin functionality in silicon, the mainstream semiconductor, is vital to establish a spin-based electronics with potential to change information technology beyond imagination. Can silicon spintronics live up to the expectation? Remarkable advances in the creation and control of spin polarization in silicon suggest so. Here, I review the key developments and achievements, and describe the building blocks of silicon spintronics. Unexpected and puzzling results are discussed, and open issues and challenges identified. More surprises lie ahead as silicon spintronics comes of age.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Silicon spintronics.
Figure 2: Spin injection into silicon from ferromagnetic tunnel contacts at low temperature.
Figure 3: Creation of spin polarization in silicon at room temperature.
Figure 4: Spin lifetime in n-type Si.
Figure 5: Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling.

Similar content being viewed by others

References

  1. Chappert, C., Fert, A. & Nguyen van Dau, F. The emergence of spin electronics in data storage. Nature Mater. 6, 813–823 (2007).

    CAS  Google Scholar 

  2. Yuasa, S. & Djayaprawira, D. D. Giant tunnel magnetoresistance in magnetic tunnel junctions with a crystalline MgO(001) barrier. J. Phys. D 40, R337–R354 (2007).

    CAS  Google Scholar 

  3. Fert, A. Nobel lecture: Origin, development, and future of spintronics. Rev. Mod. Phys. 80, 1517–1530 (2008).

    CAS  Google Scholar 

  4. International Technology Roadmap for Semiconductors (ITRS); http://www.itrs.net/reports.html.

  5. Nikonov, D. E., Bourianoff, G. I. & Gargini, P. A. Power dissipation in spintronic devices out of thermodynamic equilibrium. J. Supercond. Novel Magn. 19, 497–513 (2006).

    CAS  Google Scholar 

  6. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    CAS  Google Scholar 

  7. Nikonov, D. E. & Bourianoff, G. I. Operation and modeling of semiconductor spintronics computing devices. J. Supercond. Novel Magn. 21, 479–493 (2008).

    CAS  Google Scholar 

  8. Bernevig, B. A. & Zhang, S. Towards dissipationless spin transport in semiconductors. IBM J. Res. Dev. 50, 141–148 (2006).

    CAS  Google Scholar 

  9. Datta, S. & Das, B. Electronic analog of the electro-optic modulator. Appl. Phys. Lett. 56, 665–667 (1990).

    CAS  Google Scholar 

  10. Flatté, M. E., Yu, Z. G., Johnston-Halperin, E. & Awschalom, D. D. Theory of semiconductor magnetic bipolar transistors. Appl. Phys. Lett. 84, 4740–4742 (2003).

    Google Scholar 

  11. Fabian, J., Žutić, I. & Das Sarma, S. Magnetic bipolar transistor. Appl. Phys. Lett. 84, 85–87 (2004).

    CAS  Google Scholar 

  12. Sugahara, S. & Tanaka, M. A spin metal-oxide-semiconductor field-effect transistor using half-metallic-ferromagnet contacts for the source and drain. Appl. Phys. Lett. 84, 2307–2309 (2004).

    CAS  Google Scholar 

  13. Tanaka, M. & Sugahara, S. MOS-based spin devices for reconfigurable logic. IEEE Trans. Electr. Dev. 54, 961–976 (2007).

    CAS  Google Scholar 

  14. Sugahara, S. & Nitta, J. Spin-transistor electronics: an overview and outlook. Proc. IEEE 98, 2124–2154 (2010).

    CAS  Google Scholar 

  15. Appelbaum, I. & Monsma, D. J. Transit-time spin field-effect transistor. Appl. Phys. Lett. 90, 262501 (2007).

    Google Scholar 

  16. Roy, A. M., Nikonov, D. E. & Saraswat, K. C. Conductivity mismatch and voltage dependence of magnetoresistance in a semiconductor spin injection device. J. Appl. Phys. 107, 064504 (2010).

    Google Scholar 

  17. Gao, Y., Low, T., Lundstrom, M. S. & Nikonov, D. E. Simulation of spin field effect transistors: effects of tunneling and spin relaxation on performance. J. Appl. Phys. 108, 083702 (2010).

    Google Scholar 

  18. Flatté, M. E. & Vignale, V. Unipolar spin diodes and transistors. Appl. Phys. Lett. 78, 1273–1275 (2001).

    Google Scholar 

  19. Castelano, L. K. & Sham, L. J. Proposal for efficient generation of spin-polarized current in silicon. Appl. Phys. Lett. 96, 212107 (2010).

    Google Scholar 

  20. Rüth, M., Gould, C. & Molenkamp, L. W. Zero field spin polarization in a two-dimensional paramagnetic resonant tunneling diode. Phys. Rev. B 83, 155408 (2011).

    Google Scholar 

  21. Tanamoto, T. et al. Scalability of spin field programmable gate array: a reconfigurable architecture based on spin metal-oxide-semiconductor field effect transistor. J. Appl. Phys. 109, 07C312 (2011).

    Google Scholar 

  22. Dery, H., Dalal, P., Cywiński, L. & Sham, L. J. Spin-based logic in semiconductors for reconfigurable large-scale circuits. Nature 447, 573–576 (2007).

    CAS  Google Scholar 

  23. Behin-Aein, B., Datta, B., Salahuddin, S. & Datta, S. Proposal for an all-spin logic device with built-in memory. Nature Nano. 5, 266–270 (2010).

    CAS  Google Scholar 

  24. Dery, H., Song, Y., Li, P. & Žutić, I. Silicon spin communication. Appl. Phys. Lett. 99, 082502 (2011).

    Google Scholar 

  25. Lampel, G. Nuclear dynamic polarization by optical electronic saturation and optical pumping in semiconductors. Phys. Rev. Lett. 20, 491–493 (1968).

    CAS  Google Scholar 

  26. Zakharchenya, B. P. & Meyer, F. (eds) Optical Orientation (Elsevier, 1984).

    Google Scholar 

  27. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Google Scholar 

  28. Fabian, J., Matos-Abiague, A., Ertler, C., Stano, P. & Žutić, I. Semiconductor spintronics. Acta Phys. Slov. 57, 565–907 (2007).

    CAS  Google Scholar 

  29. Wu, M. W., Jiang, J. H. & Weng, M. Q. Spin dynamics in semiconductors. Phys. Rep. 493, 61–236 (2010).

    CAS  Google Scholar 

  30. Alvarado, S. F. & Renaud, P. Observation of spin-polarized-electron tunneling from a ferromagnet into GaAs. Phys. Rev. Lett. 68, 1387–1390 (1992).

    CAS  Google Scholar 

  31. Tsymbal, E. Y. & Žutić, I. (eds) Handbook of Spin Transport and Magnetism (CRC, 2011).

    Google Scholar 

  32. Jia, Y. Q., Shi, R. C. & Chou, S. Y. Spin-valve effects in nickel/silicon/nickel junctions. IEEE Trans. Magn. 32, 4707–4709 (1996).

    CAS  Google Scholar 

  33. Hacia, S., Last, T., Fischer, S. F. & Kunze, U. Study of spin-valve operation in permalloy–SiO2–silicon nanostructures. J. Supercond. Novel Magn. 16, 187–190 (2003).

    CAS  Google Scholar 

  34. Hacia, S., Last, T., Fischer, S. F. & Kunze, U. Magnetotransport study of nanoscale permalloy–Si tunnelling structures in lateral spin-valve geometry. J. Phys. D 37, 1310–1315 (2004).

    CAS  Google Scholar 

  35. Hwang, W. J. et al. Spin transport in a lateral spin-injection device with an FM/Si/FM junction. J. Magn. Magn. Mater. 272–276, 1915–1916 (2004).

    Google Scholar 

  36. Lee, K. I. et al. Spin-valve effect in an FM/Si/FM junction. J. Mater. Sci. Mater. Electron. 16, 131–133 (2005).

    CAS  Google Scholar 

  37. Dennis, C. L., Gregg, J. F., Ensell, G. J. & Thompson, S. M. Evidence for electrical spin tunnel injection into silicon. J. Appl. Phys. 100, 043717 (2006).

    Google Scholar 

  38. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4973 (2000).

    CAS  Google Scholar 

  39. Rashba, E. I. Theory of electrical spin injection: tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    CAS  Google Scholar 

  40. Fert, A. & Jaffrès, H. Conditions for efficient spin injection from a ferromagnetic metal into a semiconductor. Phys. Rev. B 64, 184420 (2001).

    Google Scholar 

  41. Min, B. C., Motohashi, K., Lodder, J. C. & Jansen, R. Tunable spin–tunnel contacts to silicon using low-work-function ferromagnets. Nature Mater. 5, 817–822 (2006).

    CAS  Google Scholar 

  42. Jansen, R. et al. Electrical spin injection into moderately doped silicon enabled by tailored interfaces. Phys. Rev. B 82, 241305 (2010).

    Google Scholar 

  43. Jansen, R., Min, B. C. & Dash, S. P. Oscillatory spin-polarized tunnelling from silicon quantum wells controlled by electric field. Nature Mater. 9, 133–138 (2010).

    CAS  Google Scholar 

  44. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    CAS  Google Scholar 

  45. Jonker, B. T., Kioseoglou, G., Hanbicki, A. T., Li, C. H. & Thompson, P. E. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys. 3, 542–546 (2007).

    CAS  Google Scholar 

  46. Van 't Erve, O. M. J. et al. Electrical injection and detection of spin-polarized carriers in silicon in a lateral transport geometry. Appl. Phys. Lett. 91, 212109 (2007).

    Google Scholar 

  47. Huang, B., Monsma, D. J. & Appelbaum, I. Coherent spin transport through a 350 micron thick silicon wafer. Phys. Rev. Lett. 99, 177209 (2007).

    Google Scholar 

  48. Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

    CAS  Google Scholar 

  49. Jeon, K. R. et al. Electrical spin accumulation with improved bias voltage dependence in a crystalline CoFe/MgO/Si system. Appl. Phys. Lett. 98, 262102 (2011).

    Google Scholar 

  50. Suzuki, T. et al. Room-temperature electron spin transport in a highly doped Si channel. Appl. Phys. Express 4, 023003 (2011).

    Google Scholar 

  51. Li, P. & Dery, H. Theory of spin-dependent phonon-assisted optical transitions in silicon. Phys. Rev. Lett. 105, 037204 (2010).

    Google Scholar 

  52. Nastos, F., Rioux, J., Strimas-Mackey, M., Mendoza, B. S. & Sipe, J. E. Full band structure LDA and k·p calculations of optical spin-injection. Phys. Rev. B 76, 205113 (2007).

    Google Scholar 

  53. Mavropoulos, P. Spin injection from Fe into Si(001): ab initio calculations and role of the Si complex band structure. Phys. Rev. B 78, 054446 (2008).

    Google Scholar 

  54. Cheng, J. L., Wu, M. W. & Fabian, J. Theory of the spin relaxation of conduction electrons in silicon. Phys. Rev. Lett. 104, 016601 (2010).

    CAS  Google Scholar 

  55. Cheng, J. L., Rioux, J., Fabian, J. & Sipe, J. E. Theory of optical spin orientation in silicon. Phys. Rev. B 83, 165211 (2011).

    Google Scholar 

  56. Li, P. & Dery, H. Spin–orbit symmetries of conduction electrons in silicon. Phys. Rev. Lett. 107, 107203 (2011).

    Google Scholar 

  57. Tang, J. M., Collins, B. T. & Flatté, M. E. Electron spin–phonon interaction symmetries and tunable spin relaxation in silicon and germanium. Phys. Rev. B 85, 045202 (2012).

    Google Scholar 

  58. Restrepo, O. D. & Windl, W. Full first-principles theory of spin relaxation in group-IV materials. Preprint at http://arxiv.org/abs/1010.5436 (2011).

  59. Le Breton, J. C., Sharma, S., Saito, H., Yuasa, S. & Jansen, R. Thermal spin current from a ferromagnet to silicon by Seebeck spin tunnelling. Nature 475, 82–85 (2011).

    CAS  Google Scholar 

  60. Jansen, R. The spin-valve transistor: a review and outlook. J. Phys. D 36, R289–R308 (2003).

    CAS  Google Scholar 

  61. Jiang, X. et al. Optical detection of hot-electron spin injection into GaAs from a magnetic tunnel transistor source. Phys. Rev. Lett. 90, 256603 (2003).

    CAS  Google Scholar 

  62. Huang, B., Monsma, D. J. & Appelbaum, I. Experimental realization of a silicon spin field-effect transistor. Appl. Phys. Lett. 91, 072501 (2007).

    Google Scholar 

  63. Huang, B. & Appelbaum, I. Time-of-flight spectroscopy via spin precession: the Larmor clock and anomalous spin dephasing in silicon. Phys. Rev. B 82, 241202 (2010).

    Google Scholar 

  64. Jang, H. J., Xu, J., Li, J., Huang, B. & Appelbaum, I. Non-ohmic spin transport in n-type doped silicon. Phys. Rev. B 78, 165329 (2008).

    Google Scholar 

  65. Grenet, L. et al. Spin injection in silicon at zero magnetic field. Appl. Phys. Lett. 94, 032502 (2009).

    Google Scholar 

  66. Kioseoglou, G. et al. Electrical spin injection into Si: A comparison between Fe/Si Schottky and Fe/Al2O3 tunnel contacts. Appl. Phys. Lett. 94, 122106 (2009).

    Google Scholar 

  67. Li, C. H., Kioseoglou, G., van 't Erve, O. M. J., Thompson, P. E. & Jonker, B. T. Electrical spin injection into Si(001) through a SiO2 tunnel barrier. Appl. Phys. Lett. 95, 172102 (2009).

    Google Scholar 

  68. Park, B. G., Banerjee, T., Min, B. C., Lodder, J. C. & Jansen, R. Tunnel spin polarization of Ni80Fe20/SiO2 probed with a magnetic tunnel transistor. Phys. Rev. B 73, 172402 (2006).

    Google Scholar 

  69. Van 't Erve, O. M. J. et al. Information processing with pure spin currents in silicon: spin injection, extraction, manipulation, and detection. IEEE Trans. Elec. Dev. 56, 2343–2347 (2009).

    CAS  Google Scholar 

  70. Sasaki, T. et al. Electrical spin injection into silicon using MgO tunnel barrier. Appl. Phys. Express 2, 053003 (2009).

    Google Scholar 

  71. Sasaki, T. et al. Temperature dependence of spin diffusion length in silicon by Hanle-type spin precession. Appl. Phys. Lett. 96, 122101 (2010).

    Google Scholar 

  72. Sasaki, T. et al. Evidence of electrical spin injection into silicon using MgO tunnel barrier. IEEE Trans. Mag. 46, 1436–1439 (2010).

    CAS  Google Scholar 

  73. Sasaki, T. et al. Local and non-local magnetoresistance with spin precession in highly doped Si. Appl. Phys. Lett. 98, 262503 (2011).

    Google Scholar 

  74. Sasaki, T., Oikawa, T., Shiraishi, M., Suzuki, Y. & Noguchi, K. Comparison of spin signals in silicon between nonlocal four-terminal and three-terminal methods. Appl. Phys. Lett. 98, 012508 (2011).

    Google Scholar 

  75. Shiraishi, M. et al. Spin transport properties in silicon in a nonlocal geometry. Phys. Rev. B 83, 241204 (2011).

    Google Scholar 

  76. Li, C. H., van 't Erve, O. M. J. & Jonker, B. T. Electrical injection and detection of spin accumulation in silicon at 500 K with magnetic metal/silicon dioxide contacts. Nature Commun. 2, 245 (2011).

    CAS  Google Scholar 

  77. Li, C. H., van 't Erve, O. M. J. & Jonker, B. T. Comment: ”Electrical injection and detection of spin accumulation in silicon at 500 K with magnetic metal/silicon dioxide contacts“ [Nature Commun. 2:245 10.1038/ncomms125 (2011)]. Preprint at http://arxiv.org/abs/1110.1620 (2011).

  78. Ando, Y. et al. Bias current dependence of spin accumulation signals in a silicon channel detected by a Schottky tunnel contact. Appl. Phys. Lett. 99, 012113 (2011).

    Google Scholar 

  79. Hamaya, K., Ando, Y., Sadoh, T. & Miyao, M. Source–drain engineering using atomically controlled heterojunctions for next-generation SiGe transistor applications. Jpn. J. Appl. Phys. 50, 010101 (2011).

    Google Scholar 

  80. Ando, Y. et al. Electric-field control of spin accumulation signals in silicon at room temperature. Appl. Phys. Lett. 99, 132511 (2011).

    Google Scholar 

  81. Jaffrès, H. & Fert, A. Spin injection from a ferromagnetic metal into a semiconductor. J. Appl. Phys. 91, 8111–8113 (2002).

    Google Scholar 

  82. Fert, A., George, J. -M., Jaffrès, H. & Mattana, R. Semiconductor between spin-polarized source and drain. IEEE Trans. Electron. Dev. 54, 921–932 (2007).

    CAS  Google Scholar 

  83. Jansen, R. & Min, B. C. Detection of a spin accumulation in nondegenerate semiconductors. Phys. Rev. Lett. 99, 246604 (2007).

    CAS  Google Scholar 

  84. Sugiura, K., Nakane, R., Sugahara, S. & Tanaka, M. Schottky barrier height of ferromagnet/Si(001) junctions. Appl. Phys. Lett. 89, 072110 (2006).

    Google Scholar 

  85. Uhrmann, T. et al. Characterization of embedded MgO/ferromagnet contacts for spin injection in silicon. J. Appl. Phys. 103, 063709 (2008).

    Google Scholar 

  86. Kohn, A., Kovács, A., Uhrmann, T., Dimopoulos, T. & Brückl, H. Structural and electrical characterization of SiO2/MgO(001) barriers on Si for a magnetic transistor. Appl. Phys. Lett. 95, 042506 (2009).

    Google Scholar 

  87. Dimopoulos, T. et al. Magnetic properties of embedded ferromagnetic contacts to silicon for spin injection. J. Phys. D 42, 085004 (2009).

    Google Scholar 

  88. Uhrmann, T. et al. Evaluation of Schottky and MgO-based tunnelling diodes with different ferromagnets for spin injection in n-Si. J. Phys. D 42, 145114 (2009).

    Google Scholar 

  89. Lee, J., Uhrmann, T., Dimopoulos, T., Brückl, H. & Fidler, J. TEM study on diffusion process of NiFe Schottky and MgO/NiFe tunneling diodes for spin injection in silicon. IEEE Trans. Magn. 46, 2067–2069 (2010).

    CAS  Google Scholar 

  90. Miao, G. X. et al. Epitaxial growth of MgO and Fe/MgO/Fe magnetic tunnel junctions on (100)-Si by molecular beam epitaxy. Appl. Phys. Lett. 93, 142511 (2009).

    Google Scholar 

  91. Benabderrahmane, R. et al. Al2O3 tunnel barrier as a good candidate for spin injection into silicon. Solid-State Electr. 54, 741–744 (2010).

    CAS  Google Scholar 

  92. Saito, Y. et al. Spin-based MOSFET and its applications. J. Electrochem. Soc. 158, H1068–H1076 (2011).

    CAS  Google Scholar 

  93. Saito, Y. et al. Spin injection, transport, and read/write operation in spin-based MOSFET. Thin Solid Films 519, 8266–8273 (2011).

    CAS  Google Scholar 

  94. Gundapaneni, S., Ganguly, S., Van Roy, W., Kaushal, S. & Sugishima, K. Effect of sputtering on ferromagnet-oxide-silicon spin injection contacts. J. Vac. Sci. Technol. B 29, 040602 (2011).

    Google Scholar 

  95. Gao, Y., Lundstrom, M. S. & Nikonov, D. E. Simulating realistic implementations of spin field effect transistor. J. Appl. Phys. 109, 07C306 (2011).

    Google Scholar 

  96. Takahashi, S. & Maekawa, S. Spin injection and detection in magnetic nanostructures. Phys. Rev. B 67, 052409 (2003).

    Google Scholar 

  97. Song, Y. & Dery, H. Spin transport theory in ferromagnet/semiconductor systems with noncollinear magnetization configurations. Phys. Rev. B 81, 045321 (2010).

    Google Scholar 

  98. Saito, H. et al. Electrical creation of spin accumulation in p-type germanium. Solid State Commun. 151, 1159–1161 (2011).

    CAS  Google Scholar 

  99. Iba, S. et al. Spin accumulation in nondegenerate and heavily doped p-type germanium. Appl. Phys. Express 5, 023003 (2012).

    Google Scholar 

  100. Jeon, K. R. et al. Electrical spin injection and accumulation in CoFe/MgO/Ge contacts at room temperature. Phys. Rev. B 84, 165315 (2011).

    Google Scholar 

  101. Jain, A. et al. Electrical spin injection and detection in germanium using three terminal geometry. Appl. Phys. Lett. 99, 162102 (2011).

    Google Scholar 

  102. Kasahara, K. et al. Spin accumulation created electrically in an n-type germanium channel using Schottky tunnel contacts. J. Appl. Phys. 111, 07C503 (2012).

    Google Scholar 

  103. Tran, M. et al. Enhancement of the spin accumulation at the interface between a spin-polarized tunnel junction and a semiconductor. Phys. Rev. Lett. 102, 036601 (2009).

    CAS  Google Scholar 

  104. Dash, S. P. et al. Spin precession and inverted Hanle effect in a semiconductor near a finite-roughness ferromagnetic interface. Phys. Rev. B 84, 054410 (2011).

    Google Scholar 

  105. Jansen, R., Deac, A. M., Saito, H. & Yuasa, S. Injection and detection of spin in a semiconductor by tunneling via interface states. Preprint at http://arxiv.org/abs/1203.4034 (2012).

  106. Zhou, Y. et al. Electrical spin injection and transport in germanium. Phys. Rev. B 84, 125323 (2011).

    Google Scholar 

  107. Appelbaum, I. Introduction to spin-polarized ballistic hot electron injection and detection in silicon. Phil. Trans. R. Soc. A 369, 3554–3574 (2011).

    CAS  Google Scholar 

  108. Pifer, J. H. Microwave conductivity and conduction-electron spin-resonance linewidth of heavily doped Si:P and Si:As. Phys. Rev. B 12, 4391–4402 (1975).

    CAS  Google Scholar 

  109. Ochiai, Y. & Matsuura, E. ESR in heavily doped n-type silicon near a metal–nonmetal transition. Phys. Status Solidi A 38, 243–252 (1976).

    CAS  Google Scholar 

  110. Zarifis, V. & Castner, T. G. Observation of the conduction-electron spin resonance from metallic antimony-doped silicon. Phys. Rev. B 57, 14600–14602 (1998).

    CAS  Google Scholar 

  111. Hilton, D. J. & Tang, C. L. Optical orientation and femtosecond relaxation of spin-polarized holes in GaAs. Phys. Rev. Lett. 89, 146601 (2002).

    CAS  Google Scholar 

  112. Loren, E. J. et al. Hole spin relaxation and intervalley electron scattering in germanium. Phys. Rev. B 84, 214307 (2011).

    Google Scholar 

  113. Hautmann, C., Surrer, B. & Betz, M. Ultrafast optical orientation and coherent Larmor precession of electron and hole spins in bulk germanium. Phys. Rev. B 83, 161203 (2011).

    Google Scholar 

  114. Ando, K. & Saitoh, E. Observation of the inverse spin Hall effect in silicon. Nature Commun. 3, 629 (2012).

    Google Scholar 

  115. Shikoh, E. et al. Spin-pumping-induced spin transport in p-type Si at room temperature. Preprint at http://arxiv.org/abs/1107.0376 (2011).

  116. Conwell, E. M. Impurity band conduction in germanium and silicon. Phys. Rev 103, 51–61 (1956).

    CAS  Google Scholar 

  117. Nitta, J., Akazaki, T., Takayanagi, H. & Enoki, T. Gate control of spin–orbit interaction in an inverted InGaAs/InAlAs heterostructure. Phys. Rev. Lett. 78, 1335–1338 (1997).

    CAS  Google Scholar 

  118. Sahoo, S. et al. Electric field control of spin transport. Nature Phys. 1, 99–102 (2005).

    CAS  Google Scholar 

  119. Merchant, C. A. & Markovic, N. Electrically tunable spin polarization in a carbon nanotube spin diode. Phys. Rev. Lett. 100, 156601 (2008).

    Google Scholar 

  120. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nature Mater. 11, 391–399 (2012).

    CAS  Google Scholar 

  121. Jansen, R., Deac, A. M., Saito, H. & Yuasa, S. Thermal spin current and magnetothermopower by Seebeck spin tunneling. Phys. Rev. B 85, 094401 (2012).

    Google Scholar 

Download references

Acknowledgements

I thank H. Saito, S. Yuasa and K. Ando for critical reading of the manuscript and useful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ron Jansen.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Jansen, R. Silicon spintronics. Nature Mater 11, 400–408 (2012). https://doi.org/10.1038/nmat3293

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3293

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing