Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Highly monodisperse core–shell particles created by solid-state reactions

Abstract

The size distribution of particles, which is essential for many properties of nanomaterials, is equally important for the mechanical behaviour of the class of alloys whose strength derives from a dispersion of nanoscale precipitates. However, particle size distributions formed by solid-state precipitation are generally not well controlled. Here we demonstrate, through the example of core–shell precipitates in Al–Sc–Li alloys, an approach to forming highly monodisperse particle size distributions by simple solid-state reactions. The approach involves the use of a two-step heat treatment, whereby the core formed at high temperature provides a template for growth of the shell at lower temperature. If the core is allowed to grow to a sufficient size, the shell develops in a ‘size focusing’ regime, where smaller particles grow faster than larger ones. These results suggest strategies for manipulating precipitate size distributions in similar systems through simple variations in thermal treatments.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Size distributions of precipitates in AlLiSc alloy measured with TEM.
Figure 2: Characterization of a single Al3(Li,Sc) core–shell precipitate in Al.
Figure 3: Thermodynamic and kinetic modelling of Al3(Li,Sc) precipitation.
Figure 4: Comparison of the evolution of precipitate sizes using the method described in this study with classical Ostwald ripening and an alternate route used in colloid synthesis.

References

  1. Gayle, F. & Goodway, M. Precipitation hardening in the first aerospace aluminum-alloy—the Wright Flyer crankcase. Science 266, 1015–1017 (1994).

    Article  CAS  Google Scholar 

  2. Lu, K. The future of metals. Science 328, 319–320 (2010).

    Article  CAS  Google Scholar 

  3. Mao, Z., Sudbrack, C. K., Yoon, K. E., Martin, G. & Seidman, D. N. The mechanism of morphogenesis in a phase-separating concentrated multicomponent alloy. Nature Mater. 6, 210–216 (2007).

    Article  CAS  Google Scholar 

  4. Clouet, E. et al. Complex precipitation pathways in multicomponent alloys. Nature Mater. 5, 482–488 (2006).

    Article  CAS  Google Scholar 

  5. Sigli, C. Aluminium Alloys: Their Physical and Mechanical Properties 50–59 (Wiley–VCH, 2008).

    Google Scholar 

  6. Ardell, A. & Ozolins, V. Trans-interface diffusion-controlled coarsening. Nature Mater. 4, 309–316 (2005).

    Article  CAS  Google Scholar 

  7. Srinivasan, R. et al. Atomic scale structure and chemical composition across order–disorder interfaces. Phys. Rev. Lett. 102, 86101 (2009).

    Article  CAS  Google Scholar 

  8. Marquis, E. A., Seidman, D. N., Asta, M., Woodward, C. & Ozolins, V. Mg segregation at Al/Al3Sc heterophase interfaces on an atomic scale: Experiments and computations. Phys. Rev. Lett. 91, 036101 (2003).

    Article  CAS  Google Scholar 

  9. Miura, Y., Horikawa, K., Yamada, K. & Nakayama, M. in Aluminum Alloys: Their Physical and Mechanical Properties, Papers Presented at the International Conference, 4th, Atlanta, Sept. 11–16, 1994 (1994), Vol. 2 (eds Sanders, T. H. & Starke, E. A.) 161–168 (Georgia Institute of Technology, 1994).

    Google Scholar 

  10. Berezina, A. L., Kolobnev, N. I., Chuistov, K. V., Kotko, A. B. & Molebny, O. A. Coherent composite phases formation in aged Al–Li base alloys. Mater. Sci. Forum 396–402, 977–982 (2002).

    Article  Google Scholar 

  11. Krug, M. E., Dunand, D. C. & Seidman, D. N. Composition profiles within Al3Li and Al3Sc/Al3Li nanoscale precipitates in aluminum. Appl. Phys. Lett. 92, 124107 (2008).

    Article  Google Scholar 

  12. Krug, M. E., Dunand, D. C. & Seidman, D. N. Effects of Li additions on precipitation-strengthened Al–Sc and Al–Sc–Yb alloys. Acta Mater. 59, 1700–1715 (2011).

    Article  CAS  Google Scholar 

  13. Radmilovic, V., Tolley, A., Marquis, E. A., Rossell, M. D., Lee, Z. & Dahmen, U. Monodisperse Al3(LiScZr) core/shell precipitates in Al alloys. Scr. Mater. 58, 529–532 (2008).

    Article  CAS  Google Scholar 

  14. Hyland, R. W. Homogeneous nucleation kinetics of Al3Sc in a dilute Al–Sc alloy. Metall. Mater. Trans. A 23, 1947–1955 (1992).

    Article  Google Scholar 

  15. Radmilovic, V., Fox, A. G. & Thomas, G. Spinodal decomposition of Al-rich Al–Li alloys. Acta Metall. 37, 2385–2394 (1989).

    Article  CAS  Google Scholar 

  16. Fox, A. G., Fuller, S. C., Radmilovic, V. & Whitman, C. A powder x-ray diffraction study of a solution treated and ice brine quenched Al–14.25 at.% Li alloy. J. Mater. Res. 6, 712–718 (1991).

    Article  CAS  Google Scholar 

  17. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    Article  CAS  Google Scholar 

  18. Clouet, E., Barbu, A., Laé, L. & Martin, G. Precipitation kinetics of A13Zr and Al3Sc in aluminum alloys modeled with cluster dynamics. Acta Mater. 53, 2313–2325 (2005).

    Article  CAS  Google Scholar 

  19. Robson, J. D. & Prangnell, P. B. Modelling Al3Zr dispersoid precipitation in multicomponent aluminium alloys. Mater. Sci. Eng. A 352, 240–250 (2003).

    Article  Google Scholar 

  20. Tolley, A., Radmilovic, V. & Dahmen, U. Segregation in Al3(Sc,Zr) precipitates in Al–Sc–Zr alloys. Scr. Mater. 52, 621–625 (2005).

    Article  CAS  Google Scholar 

  21. Aydinol, M. K. & Bor, A. S. Coarsening of δ′ (Al3 Li) and composite precipitates in an Al-2.5-% Li-0.15-% Zr alloy. J. Mater. Sci. 29, 15–25 (1994).

    Article  Google Scholar 

  22. Kuehmann, C. J. & Voorhees, P. W. Ostwald ripening in ternary alloys. Metall. Mater. Trans. A 27, 937–943 (1996).

    Article  Google Scholar 

  23. Moreau, C., Allouche, A. & Knystautas, E. J. Measurements of the diffusion rate of lithium in aluminum at low-temperature by elastic recoil detection analysis. J. Appl. Phys. 58, 4582–4586 (1985).

    Article  CAS  Google Scholar 

  24. Fujikawa, S. I. Impurity diffusion of scandium in aluminium. Defect Diffusion Forum 143–147, 115–120 (1997).

    Google Scholar 

  25. Royset, J. & Ryum, N. Kinetics and mechanisms of precipitation in an Al-0.2 wt.% Sc alloy. Mater. Sci. Eng. A 396, 409–422 (2005).

    Article  Google Scholar 

  26. Noble, B. & Bray, S. E. Use of the Gibbs–Thompson relation to obtain the interfacial energy of δ′ precipitates in Al–Li alloys. Mater. Sci. Eng. A 266, 80–85 (1999).

    Article  Google Scholar 

  27. Murray, J. The Al–Sc system. J. Phase Equilib. 19, 380–384 (1998).

    Article  CAS  Google Scholar 

  28. Hallstedt, B. & Kim, O. Thermodynamic assessment of the Al–Li system. Int. J. Mater. Res. 98, 961–969 (2007).

    Article  CAS  Google Scholar 

  29. Mao, Z., Chen, W., Seidman, D. N. & Wolverton, C. First-principles study of the nucleation and stability of ordered precipitates in ternary Al–Sc–Li alloys. Acta Mater. 59, 3012–3023 (2011).

    Article  CAS  Google Scholar 

  30. Voorhees, P. W. & Johnson, W. C. Development of spatial correlations during diffusional late-stage phase transformations in stressed solids. Phys. Rev. Lett. 61, 2225–2228 (1988).

    Article  CAS  Google Scholar 

  31. LaMer, V. K. & Dinegar, R. H. Theory, production and mechanism of formation of monodispersed hydrosols. J. Am. Chem. Soc. 72, 4847–4854 (1950).

    Article  CAS  Google Scholar 

  32. Monachon, C., Dunand, D. C. & Seidman, D. N. Atomic-scale characterization of aluminum-based multishell nanoparticles created by solid-state synthesis. Small 6, 1728–1731 (2010).

    Article  CAS  Google Scholar 

  33. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  34. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  35. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  36. Kresse, G. & Hafner, J. Ab-initio molecular-dynamics for liquid-metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  37. Kresse, G. & Hafner, J. Ab-initio molecular-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996).

    Article  CAS  Google Scholar 

  39. Van de Walle, A., Asta, M. & Ceder, G. M. The alloy theoretic automated toolkit: A user guide. Calphad 26, 539–553 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the US Department of Energy under Contracts # DE-AC02-05CH11231 (V.R., A.T., A.G., U.D.) and DE-FG02-06ER46282 (M.A.). Electron microscopy was performed at the National Center for Electron Microscopy, which is supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under Contract No. DE-AC02-05CH11231. C.O. acknowledges funding from the National Sciences and Engineering Research Council of Canada. V.R. acknowledges support of Nanotechnology and Functional Materials Center, funded by the European FP7 project No. 245916, and support from the Ministry of Education and Science of the Republic of Serbia, under project No. 172054. M. Watanabe, R. Erni and Z. Lee are acknowledged for their assistance to M.D.R. in TEM/STEM/EELS data acquisition/reconstruction. We acknowledge Mr. J. Wu of LBNL, Materials Science Division, for alloy preparation.

Author information

Authors and Affiliations

Authors

Contributions

V.R. conceived and designed the experiments and wrote the first draft of the manuscript. U.D., M.A. and C.O. co-wrote the manuscript. C.O. and M.A. performed first-principles simulation and continuum modelling. M.D.R. and V.R. carried out high-resolution microscopy and exit wave reconstruction. E.A.M. performed 3D-APT experiments and analysis. A.T., M.D.R. and A.G. carried out sample preparation and basic TEM characterization. V.R., U.D., M.A. and C.O. analysed the experimental results. All authors contributed to discussions.

Corresponding author

Correspondence to V. Radmilovic.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1284 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Radmilovic, V., Ophus, C., Marquis, E. et al. Highly monodisperse core–shell particles created by solid-state reactions. Nature Mater 10, 710–715 (2011). https://doi.org/10.1038/nmat3077

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3077

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing