Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electrically tunable spin injector free from the impedance mismatch problem

Abstract

Injection of spin currents into solids is crucial for exploring spin physics and spintronics1,2. There has been significant progress in recent years in spin injection into high-resistivity materials, for example, semiconductors and organic materials, which uses tunnel barriers to circumvent the impedance mismatch problem3,4,5,6,7,8,9,10,11,12,13,14; the impedance mismatch between ferromagnetic metals and high-resistivity materials drastically limits the spin-injection efficiency15. However, because of this problem, there is no route for spin injection into these materials through low-resistivity interfaces, that is, Ohmic contacts, even though this promises an easy and versatile pathway for spin injection without the need for growing high-quality tunnel barriers. Here we show experimental evidence that spin pumping enables spin injection free from this condition; room-temperature spin injection into GaAs from Ni81Fe19 through an Ohmic contact is demonstrated through dynamical spin exchange. Furthermore, we demonstrate that this exchange can be controlled electrically by applying a bias voltage across a Ni81Fe19/GaAs interface, enabling electric tuning of the spin-pumping efficiency.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Spin injection through carrier transport and dynamical exchange interaction.
Figure 2: Dynamical spin injection and ISHE.
Figure 3: Measurements of spin injection.
Figure 4: Electric control of dynamical spin injection.

Similar content being viewed by others

References

  1. Žutić, I., Fabian, J. & Das Sarma, S. Spintronics: Fundamentals and applications. Rev. Mod. Phys. 76, 323–410 (2004).

    Article  Google Scholar 

  2. Awschalom, D. D. & Flatté, M. E. Challenges for semiconductor spintronics. Nature Phys. 3, 153–159 (2007).

    Article  CAS  Google Scholar 

  3. Rashba, E. I. Theory of electrical spin injection: Tunnel contacts as a solution of the conductivity mismatch problem. Phys. Rev. B 62, R16267–R16270 (2000).

    Article  CAS  Google Scholar 

  4. Zhu, H. J. et al. Room-temperature spin injection from Fe into GaAs. Phys. Rev. Lett. 87, 016601 (2001).

    Article  CAS  Google Scholar 

  5. Crooker, S. A. et al. Imaging spin transport in lateral ferromagnet/semiconductor structures. Science 309, 2191–2195 (2005).

    Article  CAS  Google Scholar 

  6. Appelbaum, I., Huang, B. & Monsma, D. J. Electronic measurement and control of spin transport in silicon. Nature 447, 295–298 (2007).

    Article  CAS  Google Scholar 

  7. Jonker, B. T., Kioseoglou, G., Hanbicki, A. T., Li, C. H. & Thompson, P. E. Electrical spin-injection into silicon from a ferromagnetic metal/tunnel barrier contact. Nature Phys. 3, 542–546 (2007).

    Article  CAS  Google Scholar 

  8. Lou, X. et al. Electrical detection of spin transport in lateral ferromagnet–semiconductor devices. Nature Phys. 3, 197–202 (2007).

    Article  CAS  Google Scholar 

  9. Dash, S. P., Sharma, S., Patel, R. S., de Jong, M. P. & Jansen, R. Electrical creation of spin polarization in silicon at room temperature. Nature 462, 491–494 (2009).

    Article  CAS  Google Scholar 

  10. Jiang, X. et al. Highly spin-polarized room-temperature tunnel injector for semiconductor spintronics using MgO(100). Phys. Rev. Lett. 94, 056601 (2005).

    Article  CAS  Google Scholar 

  11. Xiong, Z. H., Wu, D., Vardeny, Z. V. & Shi, J. Giant magnetoresistance in organic spin-valves. Nature 427, 821–824 (2004).

    Article  CAS  Google Scholar 

  12. Tombros, N., Jozsa, C., Popinciuc, M., Jonkman, H. T. & van Wees, B. J. Electronic spin transport and spin precession in single graphene layers at room temperature. Nature 448, 571–574 (2007).

    Article  CAS  Google Scholar 

  13. Lou, X. et al. Electrical detection of spin accumulation at a ferromagnet–semiconductor interface. Phys. Rev. Lett. 96, 176603 (2006).

    Article  CAS  Google Scholar 

  14. Tran, M. et al. Enhancement of the spin accumulation at the interface between a spin-polarized tunnel junction and a semiconductor. Phys. Rev. Lett. 102, 036601 (2009).

    Article  CAS  Google Scholar 

  15. Schmidt, G., Ferrand, D., Molenkamp, L. W., Filip, A. T. & van Wees, B. J. Fundamental obstacle for electrical spin injection from a ferromagnetic metal into a diffusive semiconductor. Phys. Rev. B 62, R4790–R4793 (2000).

    Article  CAS  Google Scholar 

  16. Tserkovnyak, Y., Brataas, A. & Bauer, G. E. W. Enhanced Gilbert damping in thin ferromagnetic films. Phys. Rev. Lett. 88, 117601 (2002).

    Article  Google Scholar 

  17. Brataas, A., Tserkovnyak, Y., Bauer, G. E. W. & Halperin, B. I. Spin battery operated by ferromagnetic resonance. Phys. Rev. B 66, 060404(R) (2002).

    Article  Google Scholar 

  18. Mizukami, S., Ando, Y. & Miyazaki, T. Effect of spin diffusion on Gilbert damping for a very thin permalloy layer in Cu/permalloy/Cu/Pt films. Phys. Rev. B 66, 104413 (2002).

    Article  Google Scholar 

  19. Bakun, A. A., Zakharchenya, B. P., Rogachev, A. A., Tkachuk, M. N. & Fleisher, V. G. Observation of a surface photocurrent caused by optical orientation of electrons in a semiconductor. JETP Lett. 40, 1293–1295 (1984).

    Google Scholar 

  20. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: Inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  21. Kimura, T., Otani, Y., Sato, T., Takahashi, S. & Maekawa, S. Room-temperature reversible spin Hall effect. Phys. Rev. Lett. 98, 156601 (2007).

    Article  CAS  Google Scholar 

  22. Valenzuela, S. O. & Tinkham, M. Direct electronic measurement of the spin Hall effect. Nature 442, 176–179 (2006).

    Article  CAS  Google Scholar 

  23. Ando, K. et al. Angular dependence of inverse spin-Hall effect induced by spin pumping investigated in a Ni81Fe19/Pt thin film. Phys. Rev. B 78, 014413 (2008).

    Article  Google Scholar 

  24. Kajiwara, Y. et al. Transmission of electrical signals by spin-wave interconversion in a magnetic insulator. Nature 464, 262–266 (2010).

    Article  CAS  Google Scholar 

  25. Yu, Z. G. & Flatté, M. E. Electric-field dependent spin diffusion and spin injection into semiconductors. Phys. Rev. B 66, 201202(R) (2002).

    Article  Google Scholar 

  26. Ando, K. et al. Electric manipulation of spin relaxation using the spin Hall effect. Phys. Rev. Lett. 101, 036601 (2008).

    Article  CAS  Google Scholar 

  27. Žutić, I., Fabian, J. & Das Sarma, S. Spin-polarized transport in inhomogeneous magnetic semiconductors: Theory of magnetic/nonmagnetic p–n junctions. Phys. Rev. Lett. 88, 066603 (2002).

    Article  Google Scholar 

  28. Trypiniotis, T., Tse, D., Steinmuller, S., Cho, W. & Bland, J. Efficient spin detection across the hybrid Co/GaAs Schottky interface. IEEE Trans. Magn. 43, 2872–2874 (2007).

    Article  CAS  Google Scholar 

  29. Sze, S. M. & Ng, K. K. Physics of Semiconductor Devices 3rd edn (Wiley–Interscience, 2006).

    Book  Google Scholar 

Download references

Acknowledgements

This work was supported by the Cabinet Office, Government of Japan, through its ‘Funding Program for Next Generation World-Leading Researchers’, a Grant-in-Aid for Research Activity Start-Up (2284005) from MEXT, Japan, a Strategic Information and Communications R&D Promotion Program from MIC (102102001), Japan, a Grant-in-Aid for Scientific Research in Priority Area ‘Creation and control of spin current’ (19048028, 19048009) from MEXT, Japan, a Grant-in-Aid for Scientific Research (A) (21244058) from MEXT, Japan, CREST-JST, Japan, and the Next Generation Supercomputing Project of Nanoscience Program from IMS, Japan.

Author information

Authors and Affiliations

Authors

Contributions

K.A. designed the experiment, collected all of the data and analysed the data. E.S. supervised the study. K.A., H.K. and T.T. fabricated the samples. K.A., S.T., J.I., H.K., C.H.W.B. and S.M. developed the explanation of the experiment. K.A. and S.T. wrote the manuscript. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to K. Ando.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 542 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ando, K., Takahashi, S., Ieda, J. et al. Electrically tunable spin injector free from the impedance mismatch problem. Nature Mater 10, 655–659 (2011). https://doi.org/10.1038/nmat3052

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat3052

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing