Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

State-selective dissociation of a single water molecule on an ultrathin MgO film

Abstract

The interaction of water with oxide surfaces has drawn considerable interest, owing to its application to problems in diverse scientific fields. Atomic-scale insights into water molecules on the oxide surface have long been recognized as essential for a fundamental understanding of the molecular processes occurring there. Here, we report the dissociation of a single water molecule on an ultrathin MgO film using low-temperature scanning tunnelling microscopy. Two types of dissociation pathway—vibrational excitation and electronic excitation—are selectively achieved by means of injecting tunnelling electrons at the single-molecule level, resulting in different dissociated products according to the reaction paths. Our results reveal the advantage of using a MgO film, rather than bulk MgO, as a substrate in chemical reactions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Single water molecules on MgO/Ag(100).
Figure 2: Vibrationally induced lateral hopping of a water molecule.
Figure 3: Vibrationally induced dissociation of water molecules.
Figure 4: Dissociation of water by electronic excitation to the LUMO level.

Similar content being viewed by others

References

  1. Henrich, V. E. & Cox, P. A. The Surface Science of Metal Oxides (Cambridge Univ. Press, 1994).

    Google Scholar 

  2. Freund, H-J., Kuhlenbeck, H. & Staemmler, V. Oxide surfaces. Rep. Prog. Phys. 59, 283–347 (1996).

    Article  CAS  Google Scholar 

  3. Street, S. C., Xu, C. & Goodman, D. W. The physical and chemical properties of ultrathin oxide films. Annu. Rev. Phys. Chem. 48, 43–68 (1997).

    Article  CAS  Google Scholar 

  4. Fujishima, A. & Honda, K. Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37–38 (1972).

    Article  CAS  Google Scholar 

  5. Weckhuysen, B. M. & Keller, D. E. Chemistry, spectroscopy and the role of supported vanadium oxides in heterogeneous catalysis. Catal. Today 78, 25–46 (2003).

    Article  CAS  Google Scholar 

  6. Bäumer, M. & Freund, H-J. Metal deposits on well-ordered oxide films. Prog. Surf. Sci. 61, 127–198 (1999).

    Article  Google Scholar 

  7. Yoon, B. et al. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307, 403–407 (2005).

    Article  CAS  Google Scholar 

  8. Pacchioni, G., Giordano, L. & Baistrocchi, M. Charging of metal atoms on ultrathin MgO/Mo(100) films. Phys. Rev. Lett. 94, 226104 (2005).

    Article  Google Scholar 

  9. Brown, G. E. Jr et al. Metal oxide surfaces and their interactions with aqueous solutions and microbial organisms. Chem. Rev. 99, 77–174 (1999).

    Article  CAS  Google Scholar 

  10. Henderson, M. A. The interaction of water with solid surfaces: Fundamental aspects revisited. Surf. Sci. Rep. 46, 1–308 (2002).

    Article  CAS  Google Scholar 

  11. Wu, M-C., Estrada, C. A. & Goodman, D. W. New approach to high-resolution electron-energy-loss spectroscopy of polar materials: Studies of water and methanol adsorption on ultrathin MgO(100) films. Phys. Rev. Lett. 67, 2910–2913 (1991).

    Article  CAS  Google Scholar 

  12. McCarthy, M. I., Schenter, G. K., Scamehorn, C. A. & Nicholas, J. B. Structure and dynamics of the water/MgO interface. J. Phys. Chem. 100, 16989–16995 (1996).

    Article  CAS  Google Scholar 

  13. Giordano, L., Goniakowski, J. & Suzanne, J. Partial dissociation of water molecules in the (3×2) water monolayer deposited on the MgO(100) surface. Phys. Rev. Lett. 81, 1271–1273 (1998).

    Article  CAS  Google Scholar 

  14. Johnson, M. A. et al. Dissociation of water at the MgO(100)-water interface: Comparison of theory with experiment. J. Phys. Chem. B 103, 3391–3398 (1999).

    Article  CAS  Google Scholar 

  15. Altieri, S., Tjeng, L. H. & Sawatzky, G. A. Electronic structure and chemical reactivity of oxide-metal interfaces: MgO(100)/Ag(100). Phys. Rev. B 61, 16948–16955 (2000).

    Article  CAS  Google Scholar 

  16. Kim, Y. D., Stultz, J. & Goodman, D. W. Dissociation of water on MgO(100). J. Phys. Chem. B 106, 1515–1517 (2002).

    Article  CAS  Google Scholar 

  17. Yu, Y. et al. Partial dissociation of water on a MgO(100) film. Phys. Rev. B 68, 115414 (2003).

    Article  Google Scholar 

  18. Savio, L., Celasco, E., Vattuone, L. & Rocca, M. Enhanced reactivity at metal-oxide interface: Water interaction with MgO ultrathin films. J. Phys. Chem. B 108, 7771–7778 (2004).

    Article  CAS  Google Scholar 

  19. Carrasco, J., Illas, F. & Lopez, N. Dynamic ion pairs in the adsorption of isolated water molecules on alkaline-earth oxide (001) surfaces. Phys. Rev. Lett. 100, 016101 (2008).

    Article  Google Scholar 

  20. Ho, W. Single-molecule chemistry. J. Chem. Phys. 117, 11033–11061 (2002).

    Article  CAS  Google Scholar 

  21. Schintke, S. et al. Insulator at the ultrathin limit: MgO on Ag(001). Phys. Rev. Lett. 87, 276801 (2001).

    Article  CAS  Google Scholar 

  22. Lopez, N. & Valeri, S. MgO/Ag(001) interface structure and STM images from first principles. Phys. Rev. B 70, 125428 (2004).

    Article  Google Scholar 

  23. Komeda, T. et al. Lateral hopping of molecules induced by excitation of internal vibration mode. Science 295, 2055–2058 (2002).

    Article  CAS  Google Scholar 

  24. Pascual, J. I. et al. Selectivity in vibrationally mediated single-molecule chemistry. Nature 423, 525–528 (2003).

    Article  CAS  Google Scholar 

  25. Kim, Y., Komeda, T. & Kawai, M. Single-molecule reaction and characterization by vibrational excitation. Phys. Rev. Lett. 89, 126104 (2002).

    Article  Google Scholar 

  26. Lauhon, L. J. & Ho, W. Inducing and observing the abstraction of a single hydrogen atom in bimolecular reactions with a scanning tunneling microscope. J. Phys. Chem. B 105, 3987–3992 (2001).

    Article  CAS  Google Scholar 

  27. Morgenstern, K. & Rieder, K-H. Dissociation of water molecules with the scanning tunnelling microscope. Chem. Phys. Lett. 358, 250–256 (2002).

    Article  CAS  Google Scholar 

  28. Mugarza, A., Shimizu, T. K., Ogletree, D. F. & Salmeron, M. Chemical reaction of water molecules on Ru(0001) induced by selective excitation of vibrational modes. Surf. Sci. 603, 2030–2036 (2009).

    Article  CAS  Google Scholar 

  29. Persson, B. N. J. & Baratoff, A. Inelastic electron tunneling from a metal tip: The contribution from resonant processes. Phys. Rev. Lett. 59, 339–342 (1987).

    Article  CAS  Google Scholar 

  30. Ohara, M. et al. Role of molecular orbitals near the Fermi level in the excitation of vibrational modes of a single molecule at a scanning tunneling microscope junction. Phys. Rev. Lett. 100, 136104 (2008).

    Article  Google Scholar 

  31. Chang, H-C. & Ewing, G. E. Infrared fluorescence from a monolayer of CO on NaCl(100). Phys. Rev. Lett. 65, 2125–2128 (1990).

    Article  CAS  Google Scholar 

  32. Repp, J., Meyer, G., Olsson, F. E. & Persson, M. Controlling the charge state of individual gold adatoms. Science 305, 493–495 (2004).

    Article  CAS  Google Scholar 

  33. Liljeroth, P., Repp, J. & Meyer, G. Current-induced hydrogen tautomerization and conductance switching of naphthalocyanine molecules. Science 317, 1203–1206 (2007).

    Article  CAS  Google Scholar 

  34. Kumagai, T. et al. Direct observation of hydrogen-bond exchange within a single water dimer. Phys. Rev. Lett. 100, 166101 (2008).

    Article  CAS  Google Scholar 

  35. Mitsui, T. et al. Water diffusion and clustering on Pd(111). Science 297, 1850–1852 (2002).

    Article  CAS  Google Scholar 

  36. Morgenstern, K. & Rieder, K-H. Formation of the cyclic ice hexamer via excitation of vibrational molecular modes by the scanning tunneling microscope. J. Chem. Phys. 116, 5746–5752 (2002).

    Article  CAS  Google Scholar 

  37. Itikawa, Y. & Mason, N. Cross sections for electron collisions with water molecules. J. Phys. Chem. Ref. Data 34, 1–22 (2005).

    Article  CAS  Google Scholar 

  38. Haxton, D. J., McCurdy, C. W. & Rescigno, T. N. Dissociative electron attachment to the H2O molecule. I. Complex-valued potential-energy surfaces for the 2B1,2A1, and 2B2 metastable states of the water anion. Phys. Rev. A 75, 012710 (2007).

    Article  Google Scholar 

  39. Haxton, D. J., Rescigno, T. N. & McCurdy, C. W. Dissociative electron attachment to the H2O molecule. II. Nuclear dynamics on coupled electronic surfaces within the local complex potential model. Phys. Rev. A 75, 012711 (2007).

    Article  Google Scholar 

  40. Adaniya, H. et al. Imaging the molecular dynamics of dissociative electron attachment to water. Phys. Rev. Lett. 103, 233201 (2009).

    Article  CAS  Google Scholar 

  41. Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).

    Article  CAS  Google Scholar 

  42. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  43. Perdew, J. P. & Wang, Y. Accurate and simple analytic representation of the electron-gas correlation energy. Phys. Rev. B 45, 13244–13249 (1992).

    Article  CAS  Google Scholar 

  44. Perdew, J. P. et al. Atoms, molecules, solids, and surfaces: Applications of the generalized gradient approximation for exchange and correlation. Phys. Rev. B 46, 6671–6687 (1992).

    Article  CAS  Google Scholar 

  45. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  46. Blöchl, P. E., Jepsen, O. & Andersen, O. K. Improved tetrahedron method for Brillouin-zone integrations. Phys. Rev. B 49, 16223–16233 (1994).

    Article  Google Scholar 

  47. Henkelman, G., Uberuaga, B. P. & Jónsson, H. A climbing image nudged elastic band method for finding saddle points and minimum energy paths. J. Chem. Phys. 113, 9901–9904 (2000).

    Article  CAS  Google Scholar 

  48. Morikawa, Y. Further lowering of work function by oxygen adsorption on the K/Si(001) surface. Phys. Rev. B 51, 14802–14805 (1995).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Grant-in-Aid for Scientific Research on Priority Areas, ‘Electron transport through a linked molecule in nano-scale’, from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), in part by the Global COE Program (Chemistry Innovation through Cooperation of Science and Engineering), MEXT, Japan, and also in part by the International Program Associate (IPA) program of RIKEN. We are grateful for the computational resources of the RIKEN Integrated Cluster of Clusters (RICC) supercomputer system.

Author information

Authors and Affiliations

Authors

Contributions

H-J.S. designed and carried out the experiments. J.J. carried out the DFT calculations. K.M. analysed the action spectra. H-J.S. wrote the paper. All authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Yousoo Kim or Maki Kawai.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 618 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, HJ., Jung, J., Motobayashi, K. et al. State-selective dissociation of a single water molecule on an ultrathin MgO film. Nature Mater 9, 442–447 (2010). https://doi.org/10.1038/nmat2740

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2740

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing