Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Protocol
  • Published:

In situ electrochemical Raman spectroscopy and ab initio molecular dynamics study of interfacial water on a single-crystal surface

Abstract

The dynamics and chemistry of interfacial water are essential components of electrocatalysis because the decomposition and formation of water molecules could dictate the protonation and deprotonation processes on the catalyst surface. However, it is notoriously difficult to probe interfacial water owing to its location between two condensed phases, as well as the presence of external bias potentials and electrochemically induced reaction intermediates. An atomically flat single-crystal surface could offer an attractive platform to resolve the internal structure of interfacial water if advanced characterization tools are developed. To this end, here we report a protocol based on the combination of in situ Raman spectroscopy and ab initio molecular dynamics (AIMD) simulations to unravel the directional molecular features of interfacial water. We present the procedures to prepare single-crystal electrodes, construct a Raman enhancement mode with shell-isolated nanoparticle, remove impurities, eliminate the perturbation from bulk water and dislodge the hydrogen bubbles during in situ electrochemical Raman experiments. The combination of the spectroscopic measurements with AIMD simulation results provides a roadmap to decipher the potential-dependent molecular orientation of water at the interface. We have prepared a detailed guideline for the application of combined in situ Raman and AIMD techniques; this procedure may take a few minutes to several days to generate results and is applicable to a variety of disciplines ranging from surface science to energy storage to biology.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic representation.
Fig. 2: Equipment setup.
Fig. 3: Schematic diagram and characterization of single crystals by CV.
Fig. 4: Characterization of SHINs.
Fig. 5: Confocal depth test of laser.
Fig. 6: SEM image of SHINs on Au single-crystal surface.
Fig. 7: Schematic diagram of electrochemical Raman cell.
Fig. 8: Schematic diagram of effective spot area.
Fig. 9: Schematic illustration of AIMD simulations for the analysis of interfacial water.
Fig. 10: Raman spectra.
Fig. 11: Enhancement test of SHINs.

Similar content being viewed by others

Data availability

Data generated or analyzed during this study are included in this article and ref. 44. Source data are provided with this paper.

Code availability

The code that supports the findings of this research is available from the corresponding authors upon reasonable request.

References

  1. Seh, Z. W. et al. Combining theory and experiment in electrocatalysis: insights into materials design. Science 355, eaad4998 (2017).

    Article  PubMed  Google Scholar 

  2. Kendrick, E., Kendrick, J., Knight, K. S., Islam, M. S. & Slater, P. R. Cooperative mechanisms of fast-ion conduction in gallium-based oxides with tetrahedral moieties. Nat. Mater. 6, 871–875 (2007).

    Article  CAS  PubMed  Google Scholar 

  3. Lim, H. et al. A universal approach for the synthesis of mesoporous gold, palladium and platinum films for applications in electrocatalysis. Nat. Protoc. 15, 2980–3008 (2020).

    Article  PubMed  Google Scholar 

  4. Wang, X. S., Xu, C. C., Jaroniec, M., Zheng, Y. & Qiao, S. Z. Anomalous hydrogen evolution behavior in high-pH environment induced by locally generated hydronium ions. Nat. Commun. 10, 1–8 (2019).

    Google Scholar 

  5. Mubeen, S. et al. An autonomous photosynthetic device in which all charge carriers derive from surface plasmons. Nat. Nanotechnol. 8, 247–251 (2013).

    Article  CAS  PubMed  Google Scholar 

  6. Ye, K., Wang, G. X. & Bao, X. H. Electrodeposited Sn-based catalysts for CO2 electroreduction. Chin. J. Struc. Chem. 39, 206–213 (2020).

    CAS  Google Scholar 

  7. Velasco-Velez, J. J. et al. The structure of interfacial water on gold electrodes studied by x-ray absorption spectroscopy. Science 346, 831–834 (2014).

    Article  CAS  PubMed  Google Scholar 

  8. Li, F. et al. Interplay of electrochemical and electrical effects induces structural transformations in electrocatalysts. Nat. Catal. 4, 479–487 (2021).

    Article  CAS  Google Scholar 

  9. Wang, H. et al. Bifunctional non-noble metal oxide nanoparticle electrocatalysts through lithium-induced conversion for overall water splitting. Nat. Commun. 6, 7261 (2015).

    Article  CAS  PubMed  Google Scholar 

  10. Subbaraman, R. et al. Trends in activity for the water electrolyser reactions on 3d M(Ni,Co,Fe,Mn) hydr(oxy)oxide catalysts. Nat. Mater. 11, 550–557 (2012).

  11. Zhang, B. K. et al. Insights into the H2O/V2O5 interface structure for optimizing water-splitting. Chin. J. Struc. Chem. 39, 189–199 (2020).

    CAS  Google Scholar 

  12. Mesa, C. A. et al. Multihole water oxidation catalysis on haematite photoanodes revealed by operando spectroelectrochemistry and DFT. Nat. Chem. 12, 82–89 (2020).

    Article  CAS  PubMed  Google Scholar 

  13. Wang, T. et al. Enhancing oxygen reduction electrocatalysis by tuning interfacial hydrogen bonds. Nat. Catal. 4, 753–762 (2021).

    Article  CAS  Google Scholar 

  14. Tian, X. et al. Engineering bunched Pt–Ni alloy nanocages for efficient oxygen reduction in practical fuel cells. Science 366, 850–856 (2019).

    Article  CAS  PubMed  Google Scholar 

  15. Li, F. et al. Molecular tuning of CO2-to-ethylene conversion. Nature 577, 509–513 (2020).

    Article  CAS  PubMed  Google Scholar 

  16. Li, K. et al. Enhancement of lithium-mediated ammonia synthesis by addition of oxygen. Science 374, 1593–1597 (2021).

    Article  CAS  PubMed  Google Scholar 

  17. Garcia de Arquer, F. P. et al. CO2 electrolysis to multicarbon products at activities greater than 1 A cm−2. Science 367, 661–666 (2020).

    Article  CAS  PubMed  Google Scholar 

  18. Qing, G. et al. Recent advances and challenges of electrocatalytic N2 reduction to ammonia. Chem. Rev. 120, 5437–5516 (2020).

    Article  CAS  PubMed  Google Scholar 

  19. Vidal-Iglesias, F. J., Solla-Gullon, J., Herrero, E., Aldaz, A. & Feliu, J. M. Pd adatom decorated (100) preferentially oriented Pt nanoparticles for formic acid electrooxidation. Angew. Chem. Int. Ed. 49, 6998–7001 (2010).

    Article  CAS  Google Scholar 

  20. Hines, M. A. & Zare, R. N. The interaction of Co with Ni(111)—rainbows and rotational trapping. J. Chem. Phys. 98, 9134–9147 (1993).

    Article  CAS  Google Scholar 

  21. Marcandalli, G., Villalba, M. & Koper, M. T. M. The importance of acid–base equilibria in bicarbonate electrolytes for CO2 electrochemical reduction and CO reoxidation studied on Au (hkl) electrodes. Langmuir 37, 5707–5716 (2021).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Ledezma-Yanez, I. et al. Interfacial water reorganization as a pH-dependent descriptor of the hydrogen evolution rate on platinum electrodes. Nat. Energy 2, 17031 (2017).

    Article  CAS  Google Scholar 

  23. Zhu, S. Q., Qin, X. P., Yao, Y. & Shao, M. H. pH-dependent hydrogen and water binding energies on platinum surfaces as directly probed through surface-enhanced infrared absorption spectroscopy. J. Am. Chem. Soc. 142, 8748–8754 (2020).

    Article  PubMed  Google Scholar 

  24. Dunwell, M., Yan, Y. & Xu, B. A surface-enhanced infrared absorption spectroscopic study of pH dependent water adsorption on Au. Surf. Sci. 650, 51–56 (2016).

    Article  CAS  Google Scholar 

  25. Montenegro, A. et al. Asymmetric response of interfacial water to applied electric fields. Nature 594, 62–65 (2021).

    Article  CAS  PubMed  Google Scholar 

  26. Tong, Y., Lapointe, F., Thamer, M., Wolf, M. & Campen, R. K. Hydrophobic water probed experimentally at the gold electrode/aqueous interface. Angew. Chem. Int. Ed. 56, 4211–4214 (2017).

    Article  CAS  Google Scholar 

  27. Liu, W. T. & Shen, Y. R. In situ sum-frequency vibrational spectroscopy of electrochemical interfaces with surface plasmon resonance. Proc. Natl Acad. Sci. USA 111, 1293–1297 (2014).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Ye, Y. et al. Using soft x-ray absorption spectroscopy to characterize electrode/electrolyte interfaces in-situ and operando. J. Electron. Spectrosc. Relat. Phenom. 221, 2–9 (2017).

    Article  CAS  Google Scholar 

  29. Nong, H. N. et al. Key role of chemistry versus bias in electrocatalytic oxygen evolution. Nature 587, 408–413 (2020).

    Article  CAS  PubMed  Google Scholar 

  30. Blasco-Ahicart, M., Soriano-Lopez, J., Carbo, J. J., Poblet, J. M. & Galan-Mascaros, J. R. Polyoxometalate electrocatalysts based on earth-abundant metals for efficient water oxidation in acidic media. Nat. Chem. 10, 24–30 (2018).

    Article  CAS  PubMed  Google Scholar 

  31. Nie, S. & Emory, S. R. Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997).

    Article  CAS  PubMed  Google Scholar 

  32. Moskovits, M. Surface-enhanced spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  CAS  Google Scholar 

  33. Liu, X. L. et al. Filter-based ultralow-frequency Raman measurement down to 2 cm−1 for fast Brillouin spectroscopy measurement. Rev. Sci. Instrum. 88, 053110 (2017).

    Article  PubMed  Google Scholar 

  34. Liang, L. et al. Low-frequency shear and layer-breathing modes in Raman scattering of two-dimensional materials. ACS Nano. 11, 11777–11802 (2017).

    Article  CAS  PubMed  Google Scholar 

  35. Fleischmann, M., Hendra, P. J., Hill, I. R. & Pemble, M. E. Enhanced Raman spectra from species formed by the coadsorption of halide ions and water molecules on silver electrodes. J. Electroanal. Chem. 117, 243–255 (1981).

    Article  CAS  Google Scholar 

  36. Funtikov, A. M., Sigalaev, S. K. & Kazarinov, V. E. Surface enhanced Raman scattering and local photoemission currents on the freshly prepared surface of a silver electrode. J. Electroanal. Chem. 228, 197–218 (1987).

    Article  CAS  Google Scholar 

  37. Chen, Y. X. & Tian, Z. Q. Dependence of surface enhanced Raman scattering of water on the hydrogen evolution reaction. Chem. Phys. Lett. 281, 379–383 (1997).

    Article  CAS  Google Scholar 

  38. Zou, S. Z., Chen, Y. X., Mao, B. W., Ren, B. & Tian, Z. Q. SERS studies on electrode/electrolyte interfacial water I. Ion effects in the negative potential region. J. Electroanal. Chem. 424, 19–24 (1997).

    Article  CAS  Google Scholar 

  39. Chen, Y. X., Zou, S. Z., Huang, K. Q. & Tian, Z. Q. SERS studies of electrode/electrolyte interfacial water part II—librations of water correlated to hydrogen evolution reaction. J. Raman Spectrosc. 29, 749–756 (1998).

    Article  CAS  Google Scholar 

  40. Jiang, Y. X. et al. Characterization of surface water on Au core Pt-group metal shell nanoparticles coated electrodes by surface-enhanced Raman spectroscopy. Chem. Commun. 28, 4608–4610 (2007).

  41. Li, J. F. et al. SERS and DFT study of water on metal cathodes of silver, gold and platinum nanoparticles. Phys. Chem. Chem. Phys. 12, 2493–2502 (2010).

    Article  CAS  PubMed  Google Scholar 

  42. Li, J. F. et al. Shell-isolated nanoparticle-enhanced Raman spectroscopy. Nature 464, 392–395 (2010).

    Article  CAS  PubMed  Google Scholar 

  43. Li, C. Y. et al. In situ probing electrified interfacial water structures at atomically flat surfaces. Nat. Mater. 18, 697–701 (2019).

    Article  CAS  PubMed  Google Scholar 

  44. Wang, Y. H. et al. In situ Raman spectroscopy reveals the structure and dissociation of interfacial water. Nature 600, 81–85 (2021).

    Article  CAS  PubMed  Google Scholar 

  45. Kohn, W. & Sham, L. J. Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965).

    Article  Google Scholar 

  46. Pham, T. A., Ping, Y. & Galli, G. Modelling heterogeneous interfaces for solar water splitting. Nat. Mater. 16, 401–408 (2017).

    Article  CAS  PubMed  Google Scholar 

  47. Selcuk, S. & Selloni, A. Facet-dependent trapping and dynamics of excess electrons at anatase TiO2 surfaces and aqueous interfaces. Nat. Mater. 15, 1107–1112 (2016).

    Article  CAS  PubMed  Google Scholar 

  48. Tuckerman, M., Laasonen, K., Sprik, M. & Parrinello, M. Ab initio molecular dynamics simulation of the solvation and transport of hydronium and hydroxyl ions in water. J. Chem. Phys. 103, 150–161 (1995).

    Article  CAS  Google Scholar 

  49. Pham, T. A., Lee, D., Schwegler, E. & Galli, G. Interfacial effects on the band edges of functionalized si surfaces in liquid water. J. Am. Chem. Soc. 136, 17071–17077 (2014).

    Article  CAS  PubMed  Google Scholar 

  50. Frens, G. Controlled nucleation for the regulation of the particle size in monodisperse gold suspensions. Nat. Phys. Sci. 241, 20–22 (1973).

    Article  CAS  Google Scholar 

  51. Wu, L., Cao, D., Huang, Y. & Li, B. G. Poly(l-lactic acid)/SiO2 nanocomposites via in situ melt polycondensation of l-lactic acid in the presence of acidic silica sol: preparation and characterization. Polymer 49, 742–748 (2008).

    Article  CAS  Google Scholar 

  52. Alekseeva, M. V. et al. NiCuMo-SiO2 catalyst for pyrolysis oil upgrading: model acidic treatment study. Appl. Catal. A 573, 1–12 (2019).

    Article  CAS  Google Scholar 

  53. Pekarek, R. T. et al. Intrinsic chemical reactivity of solid-electrolyte interphase components in silicon–lithium alloy anode batteries probed by FTIR spectroscopy. J. Mater. Chem. A 8, 7897–7906 (2020).

    Article  CAS  Google Scholar 

  54. Cai, W. B. et al. Investigation of surface-enhanced Raman scattering from platinum electrodes using a confocal Raman microscope: dependence of surface roughening pretreatment. Surf. Sci. 406, 9–22 (1998).

    Article  CAS  Google Scholar 

  55. Le Ru, E. C., Blackie, E., Meyer, M. & Etchegoin, P. G. Surface enhanced Raman scattering enhancement factors: a comprehensive study. J. Phys. Chem. C. 111, 13794–13803 (2007).

    Article  Google Scholar 

  56. Lin, H. X. et al. Uniform gold spherical particles for single-particle surface-enhanced Raman spectroscopy. Phys. Chem. Chem. Phys. 15, 4130–4135 (2013).

    Article  CAS  PubMed  Google Scholar 

  57. Baltruschat, H., Rach, E. & Heitbaum, J. Correlation of SERS intensity potential profiles with adsorption/desorption peaks of pyridine on Au. J. Electroanal. Chem. 194, 109–122 (1985).

    Article  CAS  Google Scholar 

  58. Li, J. F., Rudnev, A., Fu, Y. C., Bodappa, N. & Wandlowski, T. In situ SHINERS at electrochemical single-crystal electrode/electrolyte interfaces: tuning preparation strategies and selected applications. ACS Nano 7, 8940–8952 (2013).

    Article  CAS  PubMed  Google Scholar 

  59. Dong, J. C. et al. In situ Raman spectroscopic evidence for oxygen reduction reaction intermediates at platinum single-crystal surfaces. Nat. Energy 4, 60–67 (2019).

    Article  CAS  Google Scholar 

  60. Zhang, W., Bas, A. D., Ghali, E. & Choi, Y. Passive behavior of gold in sulfuric acid medium. T. Nonferr. Metal. Soc. 25, 2037–2046 (2015).

    Article  CAS  Google Scholar 

  61. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  62. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  PubMed  Google Scholar 

  63. Le, J., Iannuzzi, M., Cuesta, A. & Cheng, J. Determining potentials of zero charge of metal electrodes versus the standard hydrogen electrode from density-functional-theory-based molecular dynamics. Phys. Rev. Lett. 119, 016801 (2017).

    Article  PubMed  Google Scholar 

  64. Cheng, J., Liu, X., VandeVondele, J., Sulpizi, M. & Sprik, M. Redox potentials and acidity constants from density functional theory based molecular dynamics. Acc. Chem. Res. 47, 3522–3529 (2014).

    Article  CAS  PubMed  Google Scholar 

  65. Cheng, J. & VandeVondele, J. Calculation of electrochemical energy levels in water using the random phase approximation and a double hybrid functional. Phys. Rev. Lett. 116, 086402 (2016).

    Article  PubMed  Google Scholar 

  66. Cheng, J., Sulpizi, M. & Sprik, M. Redox potentials and pKa for benzoquinone from density functional theory based molecular dynamics. J. Chem. Phys. 131, 154504 (2009).

    Article  PubMed  Google Scholar 

  67. Costanzo, F., Sulpizi, M., Della Valle, R. G. & Sprik, M. The oxidation of tyrosine and tryptophan studied by a molecular dynamics normal hydrogen electrode. J. Chem. Phys. 134, 244508 (2011).

    Article  PubMed  Google Scholar 

  68. Ding, S. Y. et al. Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials. Nat. Rev. Mater. 1, 16021 (2016).

    Article  CAS  Google Scholar 

  69. Ding, S. Y., You, E. M., Tian, Z. Q. & Moskovits, M. Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem. Soc. Rev. 46, 4042–4076 (2017).

    Article  CAS  PubMed  Google Scholar 

  70. Li, J. F., Zhang, Y. J., Ding, S. Y., Panneerselvam, R. & Tian, Z. Q. Core-shell nanoparticle-enhanced Raman spectroscopy. Chem. Rev. 117, 5002–5069 (2017).

    Article  CAS  PubMed  Google Scholar 

  71. Chernyshova, I. V., Somasundaran, P. & Ponnurangam, S. On the origin of the elusive first intermediate of CO2 electroreduction. Proc. Natl Acad. Sci. USA 115, E9261–E9270 (2018).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Laibinis, P. E. et al. Comparison of the structures and wetting properties of self-assembled monolayers of n-alkanethiols on the coinage metal surfaces, copper, silver, and gold. J. Am. Chem. Soc. 113, 7152–7167 (2002).

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Key Research and Development Program of China (2019YFA0705400), the National Natural Science Foundation of China (21925404, 21991151, 21902137, 22104124, 22109003 and 22021001), the Shenzhen Fundamental Research Program (no. GXWD20201231165807007-20200807111854001), the Soft Science Research Project of Guangdong Province (2017B030301013), the ‘111’ Project (B17027) and the State Key Laboratory of Fine Chemicals, Dalian University of Technology (KF2002). We thank the Major Science and Technology Infrastructure Project of Material Genome Big-science Facilities Platform supported by Municipal Development and Reform Commission of Shenzhen.

Author information

Authors and Affiliations

Authors

Contributions

J.-F.L., Z.-Q.T. and F.P. designed the project. Y.-H.W. and S.L. conceived of and designed the protocol. Y.-H.W., Y.-J.Z. and R.-Y.Z. performed the experiments and analyzed the results. S.L., Z.-L.Y. and S.Z. performed the computations and the data analysis. Y.-H.W., J.-C.D., Y.-J.Z. and S.L. wrote the protocol. All authors discussed the results and contributed to the manuscript review.

Corresponding authors

Correspondence to Feng Pan or Jian-Feng Li.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Protocols thanks Alexis Grimaud and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Related links

Key references using this protocol

Wang, Y. H. et al. Nature 600, 81–85 (2021): https://doi.org/10.1038/s41586-021-04068-z

Li, C. Y. et al. Nat. Mater. 18, 697–701 (2019): https://doi.org/10.1038/s41563-019-0356-x

Supplementary information

Source data

Source Data Fig. 3

CV data normalized by electrode area.

Source Data Fig. 4

Fig. 4b,c,e, background normalized Raman data; Fig. 4d, unprocessed Raman data.

Source Data Fig. 5

Recorded Raman intensity.

Source Data Fig. 10

Normalized Raman data.

Source Data Fig. 11

Fig.11a, background normalized Raman data; Fig. 11b, unprocessed Raman data.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, YH., Li, S., Zhou, RY. et al. In situ electrochemical Raman spectroscopy and ab initio molecular dynamics study of interfacial water on a single-crystal surface. Nat Protoc 18, 883–901 (2023). https://doi.org/10.1038/s41596-022-00782-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41596-022-00782-8

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing