Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Template engineering of Co-doped BaFe2As2 single-crystal thin films

Abstract

Understanding new superconductors requires high-quality epitaxial thin films to explore intrinsic electromagnetic properties and evaluate device applications1,2,3,4,5,6,7,8,9. So far, superconducting properties of ferropnictide thin films seem compromised by imperfect epitaxial growth and poor connectivity of the superconducting phase10,11,12,13,14. Here we report new template engineering using single-crystal intermediate layers of (001) SrTiO3 and BaTiO3 grown on various perovskite substrates that enables genuine epitaxial films of Co-doped BaFe2As2 with a high transition temperature (Tc,ρ=0 of 21.5 K, where ρ=resistivity), a small transition width (ΔTc=1.3 K), a superior critical current density Jc of 4.5 MA cm−2 (4.2 K) and strong c-axis flux pinning. Implementing SrTiO3 or BaTiO3 templates to match the alkaline-earth layer in the Ba-122 with the alkaline-earth/oxygen layer in the templates opens new avenues for epitaxial growth of ferropnictides on multifunctional single-crystal substrates. Beyond superconductors, it provides a framework for growing heteroepitaxial intermetallic compounds on various substrates by matching interfacial layers between templates and thin-film overlayers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Schematic model of Ba-122 deposition on a STO (BTO) template grown on various oxide substrates.
Figure 2: AFM image and RHEED pattern of the STO template grown on LSAT, and XRD patterns obtained on the Co-doped BaFe2As2 thin films.
Figure 3: Microstructures of Co-doped BaFe2As2 thin films investigated by TEM.
Figure 4: Resistivity and magnetic moment as a function of temperature.
Figure 5: Jc as a function of magnetic field and its angular dependence.

Similar content being viewed by others

References

  1. Chaudhari, P., Koch, R. H., Laibowitz, R. B., McGuire, T. R. & Gambino, R. J. Critical-current measurements in epitaxial films of YBa2Cu3O7−x . Phys. Rev. Lett. 58, 2684–2686 (1987).

    Article  CAS  Google Scholar 

  2. Oh, B. et al. Critical current densities and transport in superconducting YBa2Cu3O7−δ films made by electron beam coevaporation. Appl. Phys. Lett. 51, 852–854 (1987).

    Article  CAS  Google Scholar 

  3. Eckstein, J. N. et al. Atomically layered heteroepitaxial growth of single-crystal films of superconducting Bi2Sr2Ca2Cu3Ox . Appl. Phys. Lett. 57, 931–933 (1990).

    Article  CAS  Google Scholar 

  4. Zeng, X. et al. In situ epitaxial MgB2 thin films for superconducting electronics. Nature Mater. 1, 35–38 (2002).

    Article  CAS  Google Scholar 

  5. Bu, S. D. et al. Synthesis and properties of c-axis oriented epitaxial MgB2 thin films. Appl. Phys. Lett. 81, 1851–1853 (2002).

    Article  CAS  Google Scholar 

  6. Kamihara, Y., Watanabe, T., Hirano, M. & Hosono, H. Iron-based layered superconductor La[O1−xFx]FeAs (x=0.05–0.12) with TC=26 K. J. Am. Chem. Soc. 130, 3296–3297 (2008).

    Article  CAS  Google Scholar 

  7. Chen, X.-H. et al. Superconductivity at 43 K in SmFeAsO1−xFx . Nature 453, 761–762 (2008).

    Article  CAS  Google Scholar 

  8. Wang, C. et al. Thorium-doping-induced superconductivity up to 56 K in Gd1−xThxFeAsO. Europhys. Lett. 83, 67006 (2008).

    Article  Google Scholar 

  9. Rotter, M., Tegel, M. & Johrendt, D. Superconductivity at 38 K in the iron arsenide Ba1−xKxFe2As2 . Phys. Rev. Lett. 101, 107006 (2008).

    Article  Google Scholar 

  10. Hiramatsu, H., Katase, T., Kamiya, T., Hirano, M. & Hosono, H. Superconductivity in epitaxial films of Co-doped SrFe2As2 with bilayered FeAs structures and their magnetic anisotropy. Appl. Phys. Express 1, 101702 (2008).

    Article  Google Scholar 

  11. Katase, T. et al. Atomically-flat, chemically-stable, superconducting epitaxial thin film of iron-based superconductor, cobalt-doped BaFe2As2 . Solid State Commun. 149, 2121–2124 (2009).

    CAS  Google Scholar 

  12. Choi, E. M. et al. In situ fabrication of cobalt-doped SrFe2As2 thin films by using pulsed laser deposition with excimer laser. Appl. Phys. Lett. 95, 062507 (2009).

    Article  Google Scholar 

  13. Hiramatsu, H., Katase, T., Kamiya, T., Hirano, M. & Hosono, H. Heteroepitaxial growth and optoelectronic properties of layered iron oxyarsenide, LaFeAsO. Appl. Phys. Lett. 93, 162504 (2008).

    Article  Google Scholar 

  14. Haindl, S. et al. LaFeAsO1−xFx thin films: High upper critical fields and evidence of weak link behaviour. Preprint at <http://arxiv.org/abs/0907.2271v1> (2009).

  15. Yamamoto, A. et al. Small anisotropy, weak thermal fluctuations, and high field superconductivity in Co-doped iron pnictide Ba(Fe1−xCox)2As2 . Appl. Phys. Lett. 94, 062511–062513 (2009).

    Article  Google Scholar 

  16. Kametani, F. et al. Intergrain current flow in a randomly oriented polycrystalline SmFeAsO0.85 oxypnictide. Appl. Phys. Lett. 95, 142502 (2009).

    Article  Google Scholar 

  17. Lee, S. et al. Weak link behaviour of grain boundaries in superconducting Ba(Fe1−xCox)2As2 bicrystals. Appl. Phys. Lett. 95, 212505 (2009).

    Article  Google Scholar 

  18. Herranz, G. et al. High mobility in LaAlO3/SrTiO3 heterostructures: Origin, dimensionality, and perspectives. Phys. Rev. Lett. 98, 216803 (2007).

    Article  CAS  Google Scholar 

  19. Zhang, X. et al. Josephson effect between electron-doped and hole-doped iron pnictide single crystals. Appl. Phys. Lett. 95, 062510 (2009).

    Article  Google Scholar 

  20. Rijnders, G. J. H. M. et al. In situ monitoring during pulsed laser deposition of complex oxides using reflection high energy electron diffraction under high oxygen pressure. Appl. Phys. Lett. 70, 1888–1890 (1997).

    Article  CAS  Google Scholar 

  21. Wang, X. F. et al. Anisotropy in the electrical resistivity and susceptibility of superconducting BaFe2As2 single crystals. Phys. Rev. Lett. 102, 117005 (2009).

    Article  CAS  Google Scholar 

  22. Sefat, A. S. et al. Superconductivity at 22 K in Co-doped BaFe2As2 crystals. Phys. Rev. Lett. 101, 117004 (2008).

    Article  Google Scholar 

  23. Yamamoto, A. et al. Small anisotropy, weak thermal fluctuations, and high field superconductivity in Co-doped iron pnictide Ba(Fe1−xCox)2As2 . Appl. Phys. Lett. 94, 062511 (2009).

    Article  Google Scholar 

  24. Yuan, H. Q. et al. Nearly isotropic superconductivity in (Ba,K)Fe2As2 . Nature 457, 565–568 (2009).

    Article  CAS  Google Scholar 

  25. Baily, S. A. et al. Pseudoisotropic upper critical field in cobalt-doped SrFe2As2 epitaxial films. Phys. Rev. Lett. 102, 117004 (2009).

    Article  CAS  Google Scholar 

  26. Maiorov, B. et al. Angular and field properties of the critical current and melting line of Co-doped SrFe2As2 epitaxial films. Supercond. Sci. Technol. 22, 125011 (2009).

    Article  Google Scholar 

  27. McKee, R. A., Walker, F. J. & Chisholm, M. F. Crystalline oxides on silicon: The first five monolayers. Phys. Rev. Lett. 81, 3014–3017 (1998).

    Article  CAS  Google Scholar 

  28. Goncharova, L. V. et al. Interface structure and thermal stability of epitaxial SrTiO3 thin films on Si(001). J. Appl. Phys. 100, 014912 (2006).

    Article  Google Scholar 

Download references

Acknowledgements

We are grateful to J. Fournelle, M. Putti, A. Xu, F. Kametani, A. Gurevich, P. Li and V. Griffin for discussions and experimental help. Work at the University of Wisconsin was supported by funding from the DOE Office of Basic Energy Sciences under award number DE-FG02-06ER46327, and that at the NHMFL was supported under NSF Cooperative Agreement DMR-0084173, by the State of Florida and by AFOSR under grant FA9550-06-1-0474. A.Y. is supported by a fellowship of the Japan Society for the Promotion of Science. All TEM work was carried out at the University of Michigan and was supported by the Department of Energy under grant DE-FG02-07ER46416.

Author information

Authors and Affiliations

Authors

Contributions

S.L. fabricated Ba-122 thin-film samples and prepared the manuscript. J.J. carried out electromagnetic characterization and prepared the manuscript. J.D.W. fabricated Ba-122 pulsed laser deposition targets for thin-film deposition. C.W.B., H.W.J., C.M.F. and J.W.P. fabricated thin-film templates on single-crystal substrates. C.T., A.P., D.A. and A.Y. carried out electromagnetic characterizations. S.H.B. and C.W.B. analysed epitaxial arrangement by X-ray diffraction. Y.Z. and C.T.N. carried out TEM measurements. C.B.E., D.C.L., E.E.H. and X.Q.P. supervised the experiments and contributed to manuscript preparation. C.B.E. designed and directed the research. All authors discussed the results and implications and commented on the manuscript at all stages.

Corresponding author

Correspondence to C. B. Eom.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Information

Supplementary Information (PDF 480 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lee, S., Jiang, J., Zhang, Y. et al. Template engineering of Co-doped BaFe2As2 single-crystal thin films. Nature Mater 9, 397–402 (2010). https://doi.org/10.1038/nmat2721

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2721

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing