Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage

Abstract

Fast ionic transport in microporous activated-carbon electrodes is a prerequisite for the effective energy storage in electrochemical supercapacitors1,2. However, the quartz-crystal microbalance3,4,5,6,7,8 (QCM), a direct tool to measure ionic fluxes in electrochemical systems, has not yet been used for studying transport phenomena in activated carbons (except for an early report on carbon nanotubes9). Conventional electroanalytical1 and suitable surface and structure-analysis techniques10,11,12 provide limited prognostic information on this matter. It has been demonstrated herein that the QCM response of typical microporous activated carbons can serve as a gravimetric probe of the concentration and compositional changes in their pore volume. This allowed direct monitoring of the ionic fluxes, which depended strongly on the electrode’s point of zero change, pore width, ion size and cycling conditions (polarization amplitude, charge/discharge depth and so on). The information on the nature of ionic fluxes into activated carbons is critical for promoting improvements in the performance of electrochemical supercapacitors, membrane technologies and (electro/bio)chemical sensors.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Characterization of a microporous AC 1 and a non-porous, carbon-black electrode (as a reference) in an aqueous solution of 0.5 M CsCl.
Figure 2: Characterization of a microporous AC 1 electrode measured at gradually increasing potential amplitude of the voltammetric cycling.
Figure 3: Characterization of a modified microporous AC 1 electrode, measured sequentially in aqueous solutions of 0.5 M CsCl, LiCl, BaCl2 and TBACl.

Similar content being viewed by others

References

  1. Conway, B. E. Electrochemical Supercapacitors—Scientific Fundamentals and Technological Applications (Kluwer, 1999).

    Google Scholar 

  2. Simon, P. & Gogotsi, Y. Materials for electrochemical capacitors. Nature Mater. 7, 845–854 (2008).

    Article  CAS  Google Scholar 

  3. Ward, M. D. & Buttry, D. A. In situ interfacial mass detection with piezoelectric transducers. Science 249, 1000–1007 (1990).

    Article  CAS  Google Scholar 

  4. Wolfbeis, O. S. (ed.) in Piezoelectric Sensors (eds Steinem, C. & Janshoff, A.) (Springer Series on Chemical Sensors and Biosensors. Methods and Applications. Vol. 5, Springer, 2006).

  5. Arnau, A. (ed.) Piezoelectric Transducers and Applications (Springer, 2008).

  6. Bandey, H. L., Hillman, A. R., Brown, M. J. & Martin, S. J. Viscoelastic characterization of electroactive polymer films at the electrode/solution interface. Faraday Discuss. 107, 105–121 (1997).

    Article  CAS  Google Scholar 

  7. Johannsmann, D., Mathauer, K., Wegner, G. & Knoll, W. Viscoelastic properties of thin films probed with a quartz-crystal resonator. Phys. Rev. B 46, 7808–7815 (1992).

    Article  CAS  Google Scholar 

  8. Daikhin, L. et al. Influence of roughness on the admittance of the quartz crystal microbalance immersed in liquids. Anal. Chem. 74, 554–561 (2002).

    Article  CAS  Google Scholar 

  9. Barisci, J. N., Wallace, G. G. & Baughman, R. H. Electrochemical quartz crystal microbalance studies of single-wall carbon nanotubes in aqueous and non-aqueous solutions. Electrochim. Acta 46, 509–517 (2000).

    Article  CAS  Google Scholar 

  10. Bonhomme, F., Lassegues, J. C. & Servant, L. Raman spectroelectrochemistry of a carbon supercapacitor. J. Electrochem. Soc. 148, E450–E458 (2001).

    Article  CAS  Google Scholar 

  11. Hahn, M. et al. Interfacial capacitance and electronic conductance of activated carbon double-layer electrodes. Electrochem. Solid State Lett. 7, A33–A36 (2004).

    Article  CAS  Google Scholar 

  12. Hahn, M., Barbieri, G. & Kötz, R. A dilatometric study of the voltage limitation of carbonaceous electrodes in aprotic EDLC type electrolytes by charge-induced strain. Carbon 44, 2523–2533 (2006).

    Article  CAS  Google Scholar 

  13. Etchenique, R. & Brudny, V. L. Characterization of porous polyaniline–polystyrenesulfonate composite films using EQCM. Electrochem. Commun. 1, 441–444 (1999).

    Article  CAS  Google Scholar 

  14. Etchenique, R. & Brudny, V. L. Characterization of porous thin films using quartz crystal shear resonators. Langmuir 16, 5064–5071 (2000).

    Article  CAS  Google Scholar 

  15. Kastening, B. & Heins, M. Properties of electrolytes in the micropores of activated carbon. Electrochim. Acta 50, 2487–2498 (2005).

    Article  CAS  Google Scholar 

  16. Chmiola, J. et al. Anomalous increase in carbon capacitance at pore sizes less than 1 nanometer. Science 313, 1760–1763 (2006).

    Article  CAS  Google Scholar 

  17. Ka, B. H. & Oh, S. M. Electrochemical activation of expanded graphite electrode for electrochemical capacitor. J. Electrochem. Soc. 155, A685–A692 (2008).

    Article  CAS  Google Scholar 

  18. Eliad, L., Salitra, G., Soffer, A. & Aurbach, D. Ion sieving effects in the electrical double layer of porous carbon electrodes: Estimating effective ion size in electrolytic solutions. J. Phys. Chem. B 105, 6880–6887 (2001).

    Article  CAS  Google Scholar 

  19. Mysyk, R., Raymundo-Pinero, E. & Beguin, F. Saturation of subnanometre pores in an electric double-layer capacitor. Electrochem. Commun. 11, 554–556 (2009).

    Article  CAS  Google Scholar 

  20. Bruckenstein, S., Brzezinska, K. & Hillman, A. R. EQCM studies of polypyrrole films. Part 2. Exposure to aqueous sodium tosylate solutions under thermodynamically non-permselective conditions. Phys. Chem. Chem. Phys. 2, 1221–1229 (2000).

    Article  CAS  Google Scholar 

  21. Muller, E. A., Rull, L. F., Vega, L. F. & Gubbins, K. E. Adsorption of water on activated carbons: A molecular simulation study. J. Phys. Chem. 100, 1189–1196 (1996).

    Article  Google Scholar 

  22. Aurbach, D. et al. Cation trapping in highly porous carbon electrodes for EDLC cells. J. Electrochem. Soc. 155, A745–A753 (2008).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the GIF (German-Israel Foundation).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doron Aurbach.

Supplementary information

Supplementary Information

Supplementary Information (PDF 1743 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Levi, M., Salitra, G., Levy, N. et al. Application of a quartz-crystal microbalance to measure ionic fluxes in microporous carbons for energy storage. Nature Mater 8, 872–875 (2009). https://doi.org/10.1038/nmat2559

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nmat2559

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing